POLYNOMIAL INVARIANTS ARE POLYNOMIAL

被引:0
|
作者
Bar-Natan, Dror [1 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that (as conjectured by Lin and Wang) when a Vassiliev invariant of type m is evaluated on a knot projection having n crossings, the result is bounded by a constant times n(m). Thus the well known analogy between Vassiliev invariants and polynomials justifies (well, at least explains) the odd title of this note.
引用
收藏
页码:231 / 238
页数:8
相关论文
共 50 条
  • [1] Polynomial automorphisms and invariants
    van den Essen, A
    Peretz, R
    JOURNAL OF ALGEBRA, 2003, 269 (01) : 317 - 328
  • [2] Jones polynomial invariants
    Fish, A
    Keyman, E
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2006, 15 (03) : 339 - 350
  • [3] POLYNOMIAL ICOSAHEDRAL INVARIANTS
    CUMMINS, CJ
    PATERA, J
    JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (08) : 1736 - 1745
  • [4] POLYNOMIAL INVARIANTS OF GRAPHS
    NEGAMI, S
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 299 (02) : 601 - 622
  • [5] Polynomial invariants for cactuses
    van Iersel, Leo
    Moulton, Vincent
    Murakami, Yukihiro
    INFORMATION PROCESSING LETTERS, 2023, 182
  • [6] Coefficients of HOMFLY polynomial and Kauffman polynomial are not finite type invariants
    Jin, GT
    Lee, JH
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2002, 11 (04) : 545 - 553
  • [7] Laplace operator and polynomial invariants
    Iltyakov, AV
    JOURNAL OF ALGEBRA, 1998, 207 (01) : 256 - 271
  • [8] A NOTE ON DONALDSON POLYNOMIAL INVARIANTS
    MORGAN, JW
    MROWKA, TS
    DUKE MATHEMATICAL JOURNAL, 1992, 68 (02) : A223 - A230
  • [9] Polynomial invariants of graphs on surfaces
    Askanazi, Ross
    Chmutov, Sergei
    Estill, Charles
    Michel, Jonathan
    Stollenwerk, Patrick
    QUANTUM TOPOLOGY, 2013, 4 (01) : 77 - 90
  • [10] Polynomial Invariants by Linear Algebra
    de Oliveira, Steven
    Bensalem, Saddek
    Prevosto, Virgile
    AUTOMATED TECHNOLOGY FOR VERIFICATION AND ANALYSIS, ATVA 2016, 2016, 9938 : 479 - 494