I present a theory of environmental noise spectroscopy via dynamical decoupling of a qubit at an optimal working point. Considering a sequence of n pulses and pure dephasing due to quadratic coupling to Gaussian distributed noise xi(t), I use the linked-cluster (cumulant) expansion to calculate the coherence decay. Solutions allowing for reconstruction of spectral density of noise are given. For noise with correlation time shorter than the time scale on which coherence decays, the noise filtered by the dynamical decoupling procedure can be treated as effectively Gaussian at large n, and well-established methods of noise spectroscopy can be used to reconstruct the spectrum of xi(2)(t) noise. On the other hand, for noise of dominant low-frequency character (1/f(beta) noise with beta > 1), an infinite-order resummation of the cumulant expansion is necessary, and it leads to an analytical formula for coherence decay having a power-law tail at long times. In this case, the coherence at time t depends both on spectral density of xi(t) noise at omega = n pi/t, and on the effective low-frequency cutoff of the noise spectrum, which is typically given by the inverse of the data acquisition time. Simulations of decoherence due to purely transverse noise show that the analytical formulas derived in this paper apply in this often encountered case of an optimal working point, provided that the number of pulses is not very large, and that the longitudinal qubit splitting is much larger than the transverse noise amplitude.
机构:
Univ So Calif, Ctr Quantum Informat Sci & Technol, Dept Chem, Los Angeles, CA 90089 USA
Univ So Calif, Ctr Quantum Informat Sci & Technol, Dept Elect Engn, Los Angeles, CA 90089 USA
Univ So Calif, Ctr Quantum Informat Sci & Technol, Dept Phys, Los Angeles, CA 90089 USAWeizmann Inst Sci, Dept Chem Phys, IL-76100 Rehovot, Israel