Toward the Automatic Quantification of In Utero Brain Development in 3D Structural MRI: A Review

被引:30
|
作者
Benkarim, Oualid M. [1 ]
Sanroma, Gerard [1 ]
Zimmer, Veronika A. [1 ]
Munoz-Moreno, Emma [2 ,3 ,4 ]
Hahner, Nadine [2 ,3 ]
Eixarch, Elisenda [2 ,3 ]
Camara, Oscar [1 ]
Gonzalez Ballester, Miguel Angel [1 ,5 ]
Piella, Gemma [1 ]
机构
[1] Univ Pompeu Fabra, DTIC, Tanger 122-140, Barcelona 08018, Spain
[2] Univ Barcelona, Fetal Fetal Med Res Ctr i D, BCNatal Barcelona Ctr Maternal Fetal & Neonatal M, Hosp Clin, Barcelona, Spain
[3] Univ Barcelona, IDIBAPS, Hosp St Joan Deu, Barcelona, Spain
[4] IDIBAPS, Inst Invest Biomed August Pi i Sunyer, Expt 7T MRI Unit, Barcelona, Spain
[5] ICREA, Barcelona, Spain
关键词
quantitative MRI; fetal brain; spatiotemporal atlas; segmentation; growth pattern; volumetry; gyrification; ventriculomegaly; FETAL-BRAIN; VOLUME RECONSTRUCTION; SPATIAL NORMALIZATION; SPATIOTEMPORAL ATLAS; CORTICAL DEVELOPMENT; FOLDING PATTERNS; CEREBRAL-CORTEX; TERM-BORN; SEGMENTATION; GROWTH;
D O I
10.1002/hbm.23536
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Investigating the human brain in utero is important for researchers and clinicians seeking to understand early neurodevelopmental processes. With the advent of fast magnetic resonance imaging (MRI) techniques and the development of motion correction algorithms to obtain high-quality 3D images of the fetal brain, it is now possible to gain more insight into the ongoing maturational processes in the brain. In this article, we present a review of the major building blocks of the pipeline toward performing quantitative analysis of in vivo MRI of the developing brain and its potential applications in clinical settings. The review focuses on T1- and T2-weighted modalities, and covers state of the art methodologies involved in each step of the pipeline, in particular, 3D volume reconstruction, spatiotemporal modeling of the developing brain, segmentation, quantification techniques, and clinical applications. (C) 2017 Wiley Periodicals, Inc.
引用
收藏
页码:2772 / 2787
页数:16
相关论文
共 50 条
  • [21] 3D AGSE-VNet: an automatic brain tumor MRI data segmentation framework
    Xi Guan
    Guang Yang
    Jianming Ye
    Weiji Yang
    Xiaomei Xu
    Weiwei Jiang
    Xiaobo Lai
    BMC Medical Imaging, 22
  • [22] Techniques for in utero, longitudinal MRI of fetal brain development in baboons at 3 T
    Liu, Feng
    Garland, Marianne
    Duan, Yunsuo
    Stark, Raymond I.
    Xu, Dongrong
    Bansal, Ravi
    Dong, Zhengchao
    Peterson, Bradley S.
    Kangarlu, Alayar
    METHODS, 2010, 50 (03) : 147 - 156
  • [23] Development of a 3D simulator for training the mouse in utero electroporation
    Nuber, Maximilian
    Gonzalez-Uarquin, Fernando
    Neufurth, Meik
    Brockmann, Marc A.
    Baumgart, Jan
    Baumgart, Nadine
    PLOS ONE, 2022, 17 (12):
  • [24] Volumetric motion quantification by 3D velocity encoded MRI
    Anja Lutz
    Jan Paul
    Axel Bornstedt
    Gerd Ulrich Nienhaus
    Patrick Etyngier
    Peter Bernhardt
    Wolfgang Rottbauer
    Volker Rasche
    Journal of Cardiovascular Magnetic Resonance, 14 (Suppl 1)
  • [25] Automatic crude patch registration: Toward automatic 3D model building
    Wyngaerd, JV
    Van Gool, L
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2002, 87 (1-3) : 8 - 26
  • [26] Evolutionary learning of spiking neural networks towards quantification of 3D MRI brain tumor tissues
    Baladhandapani, Arunadevi
    Nachimuthu, Deepa Subramaniam
    SOFT COMPUTING, 2015, 19 (07) : 1803 - 1816
  • [27] OBJECT TRACKING BASED 3D MODELLING AND QUANTIFICATION OF ABNORMAL CONTOURS IN BRAIN MRI DICOM STUDY
    Suresh, K.
    Sakthi, U.
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2019, 14 (04): : 2098 - 2115
  • [28] Evolutionary learning of spiking neural networks towards quantification of 3D MRI brain tumor tissues
    Arunadevi Baladhandapani
    Deepa Subramaniam Nachimuthu
    Soft Computing, 2015, 19 : 1803 - 1816
  • [29] Automatic structural matching of 3D image data
    Ponomarev, Svjatoslav
    Lutsiv, Vadim
    Malyshev, Igor
    ELECTRO-OPTICAL REMOTE SENSING, PHOTONIC TECHNOLOGIES, AND APPLICATIONS IX, 2015, 9649
  • [30] Automatic correction of the 3D orientation of the brain imagery
    Liu, Xin
    Imielinska, Celina
    Connolly, S., Jr.
    D'Ambrosi, A.
    2006 IEEE International Symposium on Signal Processing and Information Technology, Vols 1 and 2, 2006, : 960 - 964