Multichannel Spatio-Temporal Feature Fusion Method for NILM

被引:21
|
作者
Feng, Jian [1 ]
Li, Keqin [1 ]
Zhang, Huaguang [1 ,2 ]
Zhang, Xinbo [1 ]
Yao, Yu [1 ,3 ]
机构
[1] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110004, Peoples R China
[2] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110004, Liaoning, Peoples R China
[3] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA
基金
中国国家自然科学基金;
关键词
Feature extraction; Home appliances; Load modeling; Power demand; Deep learning; Convolution; Hidden Markov models; Attention mechanism; features fusion; noninvasive load monitoring (NILM); spatio-temporal features; BOTTOM-UP; TOP-DOWN; ATTENTION; NETWORK;
D O I
10.1109/TII.2022.3148297
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The main task of noninvasive load monitoring is to disaggregate the power consumption of a single household appliance from an electricity meter that detects the power consumption of all household appliances. The deep neural network method has achieved leading results in this field. In this article, a multichannel spatio-temporal feature fusion method is proposed, where the spatial features extracted by convolution neural network and the temporal features extracted by the recurrent neural network are fused. And the attention module is introduced to further improve the performance of the model. Finally, the effectiveness and superiority of the proposed method are verified on three public datasets.
引用
收藏
页码:8735 / 8744
页数:10
相关论文
共 50 条
  • [31] Spatio-Temporal Feature Fusion and Guide Aggregation Network for Remote Sensing Change Detection
    Wei, Hongguang
    Wang, Nan
    Liu, Yuan
    Ma, Pengge
    Pang, Dongdong
    Sui, Xiubao
    Chen, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [32] An Ultra-short-Term Wind Speed Prediction Method Based on Spatio-Temporal Feature Decomposition and Multi Feature Fusion Network
    Li, Xuewei
    He, Guanrong
    Yu, Jian
    Liu, Zhiqiang
    Yu, Mei
    Ding, Weiping
    Xiong, Wei
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT V, 2023, 14090 : 469 - 481
  • [33] No-reference Video Quality Assessment Based on Spatio-temporal Perception Feature Fusion
    Tan, Yaya
    Kong, Guangqian
    Duan, Xun
    Long, Huiyun
    Wu, Yun
    NEURAL PROCESSING LETTERS, 2023, 55 (02) : 1317 - 1335
  • [34] Spatio-Temporal Fusion Networks for Action Recognition
    Cho, Sangwoo
    Foroosh, Hassan
    COMPUTER VISION - ACCV 2018, PT I, 2019, 11361 : 347 - 364
  • [35] SPATIO-TEMPORAL TOF DATA ENHANCEMENT BY FUSION
    Garcia, Frederic
    Aouada, Djamila
    Mirbach, Bruno
    Ottersten, Bjoern
    2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 981 - 984
  • [36] Adaptive spatio-temporal filtering of multichannel surface EMG signals
    Ostlund, Nils
    Yu, Jun
    Karlsson, J. Stefan
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2006, 44 (03) : 209 - 215
  • [37] SPATIO-TEMPORAL INTERACTIVE LAWS FEATURE CORRELATION METHOD TO VIDEO QUALITY ASSESSMENT
    Liu, Kuan-Hsien
    Liu, Tsung-Jung
    Liu, Hsin-Hua
    Pei, Soo-Chang
    2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW 2018), 2018,
  • [38] Spatio-temporal signal processing for blind separation of multichannel signals
    Tugnait, JK
    DIGITAL SIGNAL PROCESSING TECHNOLOGY, 1996, 2750 : 88 - 103
  • [39] Adaptive spatio-temporal filtering of multichannel surface EMG signals
    Nils Östlund
    Jun Yu
    J. Stefan Karlsson
    Medical and Biological Engineering and Computing, 2006, 44 : 209 - 215
  • [40] SPATIO-TEMPORAL SIGNAL PREPROCESSING FOR MULTICHANNEL ACOUSTIC ECHO CANCELLATION
    Helwani, Karim
    Spors, Sascha
    Buchner, Herbert
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 93 - 96