Lagrangians and Hamiltonians for one-dimensional autonomous systems

被引:8
|
作者
González, G [1 ]
机构
[1] ITESO, Dept Matemat & Fis, Guadalajara 45090, Jalisco, Mexico
关键词
Lagrangian; Hamiltonian; constant of motion; nonconservative autonomous system;
D O I
10.1023/B:IJTP.0000048998.57747.99
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An equation is obtained to find the Lagrangian for a one-dimensional autonomous system. The continuity of the first derivative of its constant of motion is assumed. This equation is solved for a generic nonconservative autonomous system that has certain quasi-relativistic properties. A new method based on a Taylor series expansion is used to obtain the associated Hamiltonian for this system. These results have the usual expression for a conservative system when the dissipation parameter goes to zero. An example of this approach is given.
引用
收藏
页码:1885 / 1890
页数:6
相关论文
共 50 条
  • [21] UNITARY OPERATORS AND VARIATIONAL APPROACHES FOR ONE-DIMENSIONAL HAMILTONIANS
    BOZZOLO, G
    ESEBBAG, C
    NUNEZ, J
    PLASTINO, A
    PROGRESS OF THEORETICAL PHYSICS, 1988, 80 (01): : 39 - 47
  • [22] ONE-DIMENSIONAL ACTION BILLIARDS AND EIGENVALUES OF TRUNCATED HAMILTONIANS
    DEAGUIAR, MAM
    PHYSICS LETTERS A, 1992, 164 (3-4) : 284 - 288
  • [23] DIABOLICAL POINTS IN ONE-DIMENSIONAL HAMILTONIANS QUARTIC IN THE MOMENTUM
    BERRY, MV
    MONDRAGON, RJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (06): : 873 - 885
  • [24] ON THE FINITENESS OF THE DISCRETE SPECTRUM OF HAMILTONIANS FOR QUANTUM-SYSTEMS OF 3 ONE-DIMENSIONAL OR 2-DIMENSIONAL PARTICLES
    VUGALTER, SA
    ZHISLIN, GM
    LETTERS IN MATHEMATICAL PHYSICS, 1992, 25 (04) : 299 - 306
  • [25] Heisenberg-type structures of one-dimensional quantum Hamiltonians
    Curado, EMF
    Rego-Monteiro, MA
    Nazareno, HN
    PHYSICAL REVIEW A, 2001, 64 (01): : 121051 - 121055
  • [26] Dynamics of one-dimensional large amplitude motions: molecular Hamiltonians
    Kleiner, I
    JOURNAL DE CHIMIE PHYSIQUE ET DE PHYSICO-CHIMIE BIOLOGIQUE, 1998, 95 (08) : 1831 - 1875
  • [27] POLARONS IN ONE-DIMENSIONAL SYSTEMS
    DEGANI, MH
    HIPOLITO, O
    LOBO, R
    FARIAS, GA
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1986, 19 (16): : 2919 - 2924
  • [28] One-dimensional dynamical systems
    Efremova, L. S.
    Makhrova, E. N.
    RUSSIAN MATHEMATICAL SURVEYS, 2021, 76 (05) : 821 - 881
  • [29] Lagrangians and Hamiltonians with friction
    Smith, C. E.
    SYMMETRIES IN SCIENCE XIV, 2010, 237
  • [30] OSCILLATIONS OF ONE-DIMENSIONAL SYSTEMS
    PETRINA, DY
    ENOLSKII, VZ
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1976, (08): : 756 - 760