DAHA and skein algebra of surfaces: double-torus knots

被引:7
|
作者
Hikami, Kazuhiro [1 ]
机构
[1] Kyushu Univ, Fac Math, Fukuoka, Fukuoka 8190395, Japan
关键词
Knot; Colored Jones polynomial; Double-affine Hecke algebra; Skein algebra; Macdonald polynomial; Askey-Wilson polynomial; RAISING OPERATORS; POLYNOMIALS;
D O I
10.1007/s11005-019-01189-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a topological aspect of rank-1 double-affine Hecke algebra (DAHA). Clarified is a relationship between the DAHA of A1-type (resp. CC1-type) and the skein algebra on a once-punctured torus (resp. a 4-punctured sphere), and the SL(2; Z) actions of DAHAs are identified with the Dehn twists on the surfaces. Combining these two types of DAHA, we construct the DAHA representation for the skein algebra on a genus-two surface, and we propose a DAHA polynomial for a double-torus knot, which is a simple closed curve on a genus-two Heegaard surface in S-3. Discussed is a relationship between the DAHA polynomial and the colored Jones polynomial.
引用
收藏
页码:2305 / 2358
页数:54
相关论文
共 42 条
  • [31] Iterated Torus Knots and Double Affine Hecke Algebras
    Samuelson, Peter
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (09) : 2848 - 2893
  • [32] TURNING DOUBLE-TORUS LINKS INSIDE OUT (vol 8, pg 789, 1999)
    Lane, S.
    Norwood, H.
    Norwood, R.
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2013, 22 (05)
  • [33] Representations of the Kauffman bracket skein algebra III: closed surfaces and naturality
    Bonahon, Francis
    Wong, Helen
    QUANTUM TOPOLOGY, 2019, 10 (02) : 325 - 398
  • [34] Unexpected essential surfaces among exteriors of twisted torus knots
    De Paiva, Thiago
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2022, 22 (08): : 3965 - 3982
  • [35] The Kauffman bracket skein module of the complement of (2, 2p+1)-torus knots via braids
    Diamantis, Ioannis
    TOPOLOGY AND ITS APPLICATIONS, 2023, 327
  • [36] THE DOUBLE-TORUS IONIZATION-CHAMBER DIOGENES FOR MULTIPARAMETER EXPERIMENTS ON LIGHT CHARGED-PARTICLE ACCOMPANIED FISSION
    HEEG, P
    HOFFMANN, KF
    MUTTERER, M
    THEOBALD, JP
    WEINGARTNER, K
    PANNICKE, J
    GONNENWEIN, F
    BARREAU, G
    LEROUX, B
    NUCLEAR PHYSICS A, 1983, 409 (NOV) : C379 - C383
  • [37] Frequency-dependent study of solid 4He contained in a rigid double-torus torsional oscillator
    Choi, Jaewon
    Shin, Jaeho
    Kim, Eunseong
    PHYSICAL REVIEW B, 2015, 92 (14):
  • [38] THE DOUBLE-TORUS IONIZATION-CHAMBER DIOGENES FOR THE INVESTIGATION OF CHARGED-PARTICLE ASSOCIATED NUCLEAR-FISSION
    HEEG, P
    PANNICKE, J
    MUTTERER, M
    SCHALL, P
    THEOBALD, JP
    WEINGARTNER, K
    HOFFMANN, KF
    SCHEELE, K
    ZOLLER, P
    BARREAU, G
    LEROUX, B
    GONNENWEIN, F
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1989, 278 (02): : 452 - 466
  • [39] Efficiency of non-identical double helix patterns in minimizing ropelength of torus knots
    Kim, Hyoungjun
    Oh, Seungsang
    Huh, Youngsik
    PHYSICA SCRIPTA, 2024, 99 (07)
  • [40] Closed periodic orbits of convective solutions in rapidly rotating system: Double torus knots and links, DTK
    Abdulrahman, A. A.
    Elrifai, E. A.
    CHAOS SOLITONS & FRACTALS, 2008, 36 (01) : 25 - 31