ON APPROXIMATION PROPERTIES OF l1-TYPE SPACES

被引:0
|
作者
Ciesielski, Maciej [1 ]
Lewicki, Grzegorz [2 ]
机构
[1] Poznan Univ Tech, Inst Math, Piotrowo 3A, PL-60965 Poznan, Poland
[2] Jagiellonian Univ, Dept Math & Comp Sci, Lojasiewicza 6, PL-30348 Krakow, Poland
来源
关键词
Banach spaces; continuous selection for the metric projection; Chebyshev sub-spaces; SET-VALUED MAPPINGS; METRIC PROJECTIONS; CONTINUOUS-SELECTIONS; LOWER SEMICONTINUITY; CONTINUITY; SUBSPACES;
D O I
10.1215/17358787-2018-0005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (X-n || center dot ||(n)) denote a sequence of real Banach spaces. Let X = circle plus X-n = {(x(n)) : x(n) is an element of X-n for any n is an element of N, Sigma(infinity) ||x(n)||(n) <infinity} In this article, we investigate some properties of best approximation operators associated with finite -dimensional subspaces of X. In particular, under a number of additional assumptions on (X-n)), we characterize finite -dimensional Chebyshev subspaces Y of X. Likewise, we show that the set Nuniq = {x is an element of X : card (P-Y (x)) > 1} is nowhere dense in Y, where P-Y denotes the best approximation operator onto Y. Finally, we demonstrate various (mainly negative) results on the existence of continuous selection for metric projection and we provide examples illustrating possible applications of our results.
引用
收藏
页码:935 / 954
页数:20
相关论文
共 50 条
  • [41] Orthogonality in Banach spaces and orthogonal multiscale L1-approximation
    Yang, LH
    CHINESE SCIENCE BULLETIN, 1999, 44 (01): : 25 - 35
  • [42] Orthogonality in Banach spaces and orthogonal multiscale L~1-approximation
    YANG LihuaDepartment of Scientific Computing and Computer Applications
    Institute of Mathematics
    ChineseScienceBulletin, 1999, (01) : 25 - 35
  • [43] A Role for Drosophila Amyloid Precursor Protein in Retrograde Trafficking of L1-Type Cell Adhesion Molecule Neuroglian
    Penserga, Tyrone
    Kudumala, Sirisha Rani
    Poulos, Richelle
    Godenschwege, Tanja Angela
    FRONTIERS IN CELLULAR NEUROSCIENCE, 2019, 13
  • [44] An efficient method of constructing L1-type norm feature to estimate Euclidean distance for fast vector quantization
    Pan, ZB
    Kotani, K
    Ohmi, T
    Image Processing, Biomedicine, Multimedia, Financial Engineering and Manufacturing, Vol 18, 2004, 18 : 217 - 222
  • [45] L-FUZZY APPROXIMATION SPACES AND L-FUZZY TOPOLOGICAL SPACES
    Ramadan, A. A.
    Elkordy, E. H.
    El-Dardery, M.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2016, 13 (01): : 115 - 129
  • [46] Approximation spaces and nearness type structures
    Wolski, Marcin
    FUNDAMENTA INFORMATICAE, 2007, 79 (3-4) : 567 - 577
  • [47] L1-type smoothness indicators based weighted essentially nonoscillatory scheme for Hamilton-Jacobi equations
    Rathan, Samala
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2020, 92 (12) : 1927 - 1947
  • [48] The L1-type cam homolog neuroglian is required for sensory axon advance in the periphery and CNS of the Drosophila embryo
    Martin, V.
    Rice, J.
    Merritt, D.
    Whitington, P. M.
    JOURNAL OF NEUROGENETICS, 2006, 20 (3-4) : 172 - 173
  • [49] An efficient method of constructing L1-type norm feature to estimate Euclidean distance for fast vector quantization
    Pan, Zhibin
    Ohmi, Tadahiro
    Kotani, Koji
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2006, 12 (03): : 269 - 274
  • [50] A SUBSPACE-ACCELERATED SPLIT BREGMAN METHOD FOR SPARSE DATA RECOVERY WITH JOINT l1-TYPE REGULARIZERS
    de Simone, Valentina
    di Serafino, Daniela
    Viola, Marco
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2020, 53 : 406 - 425