Multiscale quantum chemical approaches to QSAR modeling and drug design

被引:19
|
作者
De Benedetti, Pier G. [1 ]
Fanelli, Francesca [1 ]
机构
[1] Univ Modena & Reggio Emilia, Dept Life Sci, I-41125 Modena, Italy
关键词
QUANTITATIVE STRUCTURE-ACTIVITY; MOLECULAR-ORBITAL METHOD; CARBONIC-ANHYDRASE INHIBITORS; PROTEIN-COUPLED RECEPTORS; INITIO MO CALCULATIONS; COMPLEX STRUCTURES; BINDING-AFFINITY; THEORETICAL DESCRIPTORS; MECHANISTIC QSAR; LIGAND BINDING;
D O I
10.1016/j.drudis.2014.09.024
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The comparative use of classical, quantum chemical (QC) ligand-based (LB) and structure-based (SB) quantitative structure-activity relationship (QSAR) results in a detailed and mechanistic-causative description, at different scales (multiscale: classical = macroscopic, LB and SB = electronic-atomistic-nanoscale) and resolution levels, of the energetics and thermodynamics of the binding event for a congeneric set of ligands and/or drugs. QC interaction propensity (reactivity) descriptors in LB QSARs provide an implicitly more accurate estimation of the enthalpic contribution to ligand-target interactions compared with classical QSAR. As for QSAR models from ab initio SB fragment molecular orbital calculations, an explicit enthalpic description of the different additive terms in the computed binding energy is obtainable. Moreover, it is possible to estimate the difference in the free energy change of the ligand-target complex formation and evaluate, on a correlative basis, the contribution of each additive free energy term to the total value.
引用
收藏
页码:1921 / 1927
页数:7
相关论文
共 50 条
  • [31] Multiscale modeling motivation, strategy, and approaches for nanoscale material and device design and development
    Barto, Richard R.
    Borders, Tammie L.
    Breneman, Curt M.
    Schadler, Linda S.
    Cho, K. J.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237
  • [32] Integration of multiscale molecular modeling approaches with the design and discovery of fusidic acid derivatives
    Lu, Jing
    Ni, Ling-Xuan
    Wang, Jin-An
    Liu, Ze-Yun
    Shang, Kang-Le
    Bi, Yi
    FUTURE MEDICINAL CHEMISTRY, 2019, 11 (12) : 1427 - 1442
  • [33] Multiscale Approaches in Reactive Transport Modeling
    Molins, Sergi
    Knabner, Peter
    REACTIVE TRANSPORT IN NATURAL AND ENGINEERED SYSTEMS, 2019, 85 : 27 - 48
  • [34] Multiscale modeling and related hybrid approaches
    Wang, C. Y.
    Zhang, Xu
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2006, 10 (01): : 2 - 14
  • [35] QSAR and Computer Aided Drug Design
    Khan, Mahmud Tareq Hassan
    MINI-REVIEWS IN MEDICINAL CHEMISTRY, 2012, 12 (06) : 445 - 446
  • [36] QSAR IN ENVIRONMENTAL SCIENCES AND DRUG DESIGN
    HERMENS, J
    SCIENCE OF THE TOTAL ENVIRONMENT, 1991, 109 : 1 - 7
  • [37] QSAR workbench: automating QSAR modeling to drive compound design
    Richard Cox
    Darren V. S. Green
    Christopher N. Luscombe
    Noj Malcolm
    Stephen D. Pickett
    Journal of Computer-Aided Molecular Design, 2013, 27 : 321 - 336
  • [38] SYSTEMATIC QSAR PROCEDURES WITH QUANTUM CHEMICAL DESCRIPTORS
    KIKUCHI, O
    QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS, 1987, 6 (04): : 179 - 184
  • [39] New Tuberculostatic Agents Targeting Nucleic Acid Biosynthesis: Drug Design using QSAR Approaches
    Bueno, Renata V.
    Braga, Rodolpho C.
    Segretti, Natanael D.
    Ferreira, Elizabeth I.
    Trossini, Gustavo H. G.
    Andrade, Carolina H.
    CURRENT PHARMACEUTICAL DESIGN, 2014, 20 (27) : 4474 - 4485
  • [40] QSAR workbench: automating QSAR modeling to drive compound design
    Cox, Richard
    Green, Darren V. S.
    Luscombe, Christopher N.
    Malcolm, Noj
    Pickett, Stephen D.
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2013, 27 (04) : 321 - 336