Multiscale quantum chemical approaches to QSAR modeling and drug design

被引:19
|
作者
De Benedetti, Pier G. [1 ]
Fanelli, Francesca [1 ]
机构
[1] Univ Modena & Reggio Emilia, Dept Life Sci, I-41125 Modena, Italy
关键词
QUANTITATIVE STRUCTURE-ACTIVITY; MOLECULAR-ORBITAL METHOD; CARBONIC-ANHYDRASE INHIBITORS; PROTEIN-COUPLED RECEPTORS; INITIO MO CALCULATIONS; COMPLEX STRUCTURES; BINDING-AFFINITY; THEORETICAL DESCRIPTORS; MECHANISTIC QSAR; LIGAND BINDING;
D O I
10.1016/j.drudis.2014.09.024
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The comparative use of classical, quantum chemical (QC) ligand-based (LB) and structure-based (SB) quantitative structure-activity relationship (QSAR) results in a detailed and mechanistic-causative description, at different scales (multiscale: classical = macroscopic, LB and SB = electronic-atomistic-nanoscale) and resolution levels, of the energetics and thermodynamics of the binding event for a congeneric set of ligands and/or drugs. QC interaction propensity (reactivity) descriptors in LB QSARs provide an implicitly more accurate estimation of the enthalpic contribution to ligand-target interactions compared with classical QSAR. As for QSAR models from ab initio SB fragment molecular orbital calculations, an explicit enthalpic description of the different additive terms in the computed binding energy is obtainable. Moreover, it is possible to estimate the difference in the free energy change of the ligand-target complex formation and evaluate, on a correlative basis, the contribution of each additive free energy term to the total value.
引用
收藏
页码:1921 / 1927
页数:7
相关论文
共 50 条
  • [1] Molecular Modeling and QSAR Studies for Drug Design
    Correa-Basurto, Jose
    CURRENT PHARMACEUTICAL DESIGN, 2013, 19 (12) : 2137 - 2137
  • [2] Automated QSAR modeling to guide drug design
    Obrezanova, Olga
    Segall, Matthew D.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237
  • [3] Multiscale Modeling in the Clinic: Drug Design and Development
    Clancy, Colleen E.
    An, Gary
    Cannon, William R.
    Liu, Yaling
    May, Elebeoba E.
    Ortoleva, Peter
    Popel, Aleksander S.
    Sluka, James P.
    Su, Jing
    Vicini, Paolo
    Zhou, Xiaobo
    Eckmann, David M.
    ANNALS OF BIOMEDICAL ENGINEERING, 2016, 44 (09) : 2591 - 2610
  • [4] Multiscale Modeling in the Clinic: Drug Design and Development
    Colleen E. Clancy
    Gary An
    William R. Cannon
    Yaling Liu
    Elebeoba E. May
    Peter Ortoleva
    Aleksander S. Popel
    James P. Sluka
    Jing Su
    Paolo Vicini
    Xiaobo Zhou
    David M. Eckmann
    Annals of Biomedical Engineering, 2016, 44 : 2591 - 2610
  • [5] Nonlinear SVM approaches to QSPR/QSAR studies and drug design
    Doucet, Jean-Pierre
    Barbault, Florent
    Xia, Hairong
    Panaye, Annick
    Fan, Botao
    CURRENT COMPUTER-AIDED DRUG DESIGN, 2007, 3 (04) : 263 - 289
  • [6] Quantum Chemical Calculations (QSAR) of Antipyrine Drug and Its Metabolites
    Ibrahim, Ammar A.
    Abdalrazaq, Eid A.
    Ibrahim, Maher A.
    Yahya, Rosiyah
    Sulliman, Entesar A.
    ASIAN JOURNAL OF CHEMISTRY, 2012, 24 (01) : 269 - 272
  • [7] Multiscale simulation approaches to modeling drug-protein binding
    Jagger, Benjamin R.
    Kochanek, Sarah E.
    Haldar, Susanta
    Amaro, Rommie E.
    Mulholland, Adrian J.
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2020, 61 : 213 - 221
  • [8] Drug design by machine learning: Ensemble learning for QSAR modeling
    Liu, Y
    ICMLA 2005: FOURTH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, PROCEEDINGS, 2005, : 187 - 193
  • [9] Design and Viability of Resources for Teaching QSAR Modeling in Chemical Engineering
    Vargas, Nahum Galindo
    Vazquez, Avenilde Romo
    Flores, Joaquin Barroso
    ENSENANZA DE LAS CIENCIAS, 2023, 41 (02): : 93 - 115
  • [10] QSAR AND DRUG DESIGN
    TUTE, M
    CHEMISTRY & INDUSTRY, 1983, (01) : 10 - 13