Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function

被引:210
|
作者
Chung, Haegeun
Zak, Donald R.
Reich, Peter B.
Ellsworth, David S.
机构
[1] Univ Michigan, Sch Nat Resources & Environm, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Ecol & Evolutionary Biol, Ann Arbor, MI 48109 USA
[3] Univ Minnesota, Dept Forest Resources, St Paul, MN 55108 USA
关键词
complementary resource use; extracellular enzymes; FACE (free-air carbon dioxide enrichment); global change; grassland ecosystem; microbial biomass; phospholipid fatty acid (PLFA); plant diversity; soil C cycling; soil fungi;
D O I
10.1111/j.1365-2486.2007.01313.x
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
We determined soil microbial community composition and function in a field experiment in which plant communities of increasing species richness were exposed to factorial elevated CO2 and nitrogen (N) deposition treatments. Because elevated CO2 and N deposition increased plant productivity to a greater extent in more diverse plant assemblages, it is plausible that heterotrophic microbial communities would experience greater substrate availability, potentially increasing microbial activity, and accelerating soil carbon (C) and N cycling. We, therefore, hypothesized that the response of microbial communities to elevated CO2 and N deposition is contingent on the species richness of plant communities. Microbial community composition was determined by phospholipid fatty acid analysis, and function was measured using the activity of key extracellular enzymes involved in litter decomposition. Higher plant species richness, as a main effect, fostered greater microbial biomass, cellulolytic and chitinolytic capacity, as well as the abundance of saprophytic and arbuscular mycorrhizal (AM) fungi. Moreover, the effect of plant species richness on microbial communities was significantly modified by elevated CO2 and N deposition. For instance, microbial biomass and fungal abundance increased with greater species richness, but only under combinations of elevated CO2 and ambient N, or ambient CO2 and N deposition. Cellobiohydrolase activity increased with higher plant species richness, and this trend was amplified by elevated CO2. In most cases, the effect of plant species richness remained significant even after accounting for the influence of plant biomass. Taken together, our results demonstrate that plant species richness can directly regulate microbial activity and community composition, and that plant species richness is a significant determinant of microbial response to elevated CO2 and N deposition. The strong positive effect of plant species richness on cellulolytic capacity and microbial biomass indicate that the rates of soil C cycling may decline with decreasing plant species richness.
引用
收藏
页码:980 / 989
页数:10
相关论文
共 50 条
  • [21] Effects of elevated CO2, nitrogen deposition, and decreased species diversity on foliar fungal plant disease
    Mitchell, CE
    Reich, PB
    Tilman, D
    Groth, JV
    GLOBAL CHANGE BIOLOGY, 2003, 9 (03) : 438 - 451
  • [22] Microbial Activity in a Temperate Forest Soil as Affected by Elevated Atmospheric CO2
    ZHENG Jun-Qiang
    Pedosphere, 2010, 20 (04) : 427 - 435
  • [23] Elevated Atmospheric CO2 and Drought Affect Soil Microbial Community and Functional Diversity Associated with Glycine max
    Wang, Junfeng
    Wang, Yuhui
    Song, Xinshan
    Wang, Yuan
    Lei, Xiaohui
    REVISTA BRASILEIRA DE CIENCIA DO SOLO, 2017, 41
  • [24] Altered soil microbial community at elevated CO2 leads to loss of soil carbon
    Carney, Karen M.
    Hungate, Bruce A.
    Drake, Bert G.
    Megonigal, J. Patrick
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (12) : 4990 - 4995
  • [25] Elevated atmospheric CO2 and soil biota
    Hu, SJ
    Firestone, MK
    Chapin, FS
    SCIENCE, 1998, 281 (5376) : 518 - 518
  • [26] Elevated CO2 Reduces Losses of Plant Diversity Caused by Nitrogen Deposition
    Reich, Peter B.
    SCIENCE, 2009, 326 (5958) : 1399 - 1402
  • [27] Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition
    Peter B. Reich
    Jean Knops
    David Tilman
    Joseph Craine
    David Ellsworth
    Mark Tjoelker
    Tali Lee
    David Wedin
    Shahid Naeem
    Dan Bahauddin
    George Hendrey
    Shibu Jose
    Keith Wrage
    Jenny Goth
    Wendy Bengston
    Nature, 2001, 410 : 809 - 810
  • [28] Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition
    Reich, PB
    Knops, J
    Tilman, D
    Craine, J
    Ellsworth, D
    Tjoelker, M
    Lee, T
    Wedin, D
    Naeem, S
    Bahauddin, D
    Hendrey, G
    Jose, S
    Wrage, K
    Goth, J
    Bengston, W
    NATURE, 2001, 410 (6830) : 809 - 812
  • [29] The influence of atmospheric CO2 enrichment on plant-soil nitrogen interactions in a wetland plant community on the Chesapeake Bay
    Matamala, R
    Drake, BG
    PLANT AND SOIL, 1999, 210 (01) : 93 - 101
  • [30] The influence of atmospheric CO2 enrichment on plant-soil nitrogen interactions in a wetland plant community on the Chesapeake Bay
    Roser Matamala
    Bert G. Drake
    Plant and Soil, 1999, 210 : 93 - 101