Drift parameter estimation for nonlinear stochastic differential equations driven by fractional Brownian motion

被引:28
|
作者
Hu, Yaozhong [1 ]
Nualart, David [2 ]
Zhou, Hongjuan [3 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB, Canada
[2] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
[3] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85281 USA
基金
美国国家科学基金会;
关键词
Fractional Brownian motion; parameter estimation; nonlinear stochastic differential equation; one-sided dissipative Lipschitz condition; maximum inequality; moment estimate; H?lder continuity; strong consistency;
D O I
10.1080/17442508.2018.1563606
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive the strong consistency of the least squares estimator (LSE) for the drift coefficient of a fractional stochastic differential system. The drift coefficient is one-sided dissipative Lipschitz and the driving noise is additive and fractional with Hurst parameter . We assume that continuous observation is possible. The main tools are ergodic theorem and Malliavin calculus. As a by-product, we derive a maximum inequality for Skorohod integrals, which plays an important role to obtain the strong consistency of the LSE.
引用
收藏
页码:1067 / 1091
页数:25
相关论文
共 50 条