Mean Convex Mean Curvature Flow with Free Boundary

被引:7
|
作者
Edelen, Nick [1 ]
Haslhofer, Robert [2 ]
Ivaki, Mohammad N. [3 ]
Zhu, Jonathan J. [4 ]
机构
[1] Univ Notre Dame, 255 Hurley Bldg, Notre Dame, IN 46556 USA
[2] Univ Toronto, 40 St George St, Toronto, ON M5S 2E4, Canada
[3] Tech Univ Wien, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
[4] Princeton Univ, Fine Hall,Washington Rd, Princeton, NJ 08544 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
MINIMAL-SURFACES; INSCRIBED RADIUS; SINGULARITIES; REGULARITY; UNIQUENESS; MOTION; SETS;
D O I
10.1002/cpa.22009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we generalize White's regularity and structure theory for mean-convex mean curvature flow [45, 46, 48] to the setting with free boundary. A major new challenge in the free boundary setting is to derive an a priori bound for the ratio between the norm of the second fundamental form and the mean curvature. We establish such a bound via the maximum principle for a triple-approximation scheme, which combines ideas from Edelen [9], Haslhofer-Hershkovits [16], and Volkmann [43]. Other important new ingredients are a Bernstein-type theorem and a sheeting theorem for low-entropy free boundary flows in a half-slab, which allow us to rule out multiplicity 2 (half-)planes as possible tangent flows and, for mean-convex domains, as possible limit flows. (c) 2021 Wiley Periodicals LLC.
引用
收藏
页码:767 / 817
页数:51
相关论文
共 50 条
  • [41] Mean curvature flow with surgery of mean convex surfaces in three-manifolds
    Brendle, Simon
    Huisken, Gerhard
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2018, 20 (09) : 2239 - 2257
  • [42] Free boundary constant mean curvature surfaces in a strictly convex three-manifold
    Sung-Hong Min
    Keomkyo Seo
    Annals of Global Analysis and Geometry, 2022, 61 : 621 - 639
  • [43] Free boundary constant mean curvature surfaces in a strictly convex three-manifold
    Min, Sung-Hong
    Seo, Keomkyo
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2022, 61 (03) : 621 - 639
  • [44] Mean Curvature Type Flow with Perpendicular Neumann Boundary Condition inside a Convex Cone
    Guo, Fangcheng
    Li, Guanghan
    Wu, Chuanxi
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [45] Forced convex mean curvature flow in Euclidean spaces
    Guanghan Li
    Isabel Salavessa
    manuscripta mathematica, 2008, 126 : 333 - 351
  • [46] Collapsing and noncollapsing in convex ancient mean curvature flow
    Bourni, Theodora
    Langford, Mat
    Lynch, Stephen
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2023, 2023 (801): : 273 - 305
  • [47] Mean curvature flow with surgeries of two–convex hypersurfaces
    Gerhard Huisken
    Carlo Sinestrari
    Inventiones mathematicae, 2009, 175 : 137 - 221
  • [48] FLOW BY MEAN-CURVATURE OF CONVEX SURFACES INTO SPHERES
    HUISKEN, G
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1984, 20 (01) : 237 - 266
  • [49] Forced convex mean curvature flow in Euclidean spaces
    Li, Guanghan
    Salavessa, Isabel
    MANUSCRIPTA MATHEMATICA, 2008, 126 (03) : 333 - 351
  • [50] CONVEX SOLUTIONS TO THE POWER-OF-MEAN CURVATURE FLOW
    Chen, Shibing
    PACIFIC JOURNAL OF MATHEMATICS, 2015, 276 (01) : 117 - 141