Deep learning model on gravitational waveforms in merging and ringdown phases of binary black hole coalescences

被引:9
|
作者
Lee, Joongoo [1 ,2 ]
Oh, Sang Hoon [3 ]
Kim, Kyungmin [1 ,5 ]
Cho, Gihyuk [4 ]
Oh, John J. [3 ]
Son, Edwin J. [3 ]
Lee, Hyung Mok [1 ,2 ]
机构
[1] Korea Astron & Space Sci Inst, 776 Daedeokdae Ro, Daejeon 34055, South Korea
[2] Seoul Natl Univ, Dept Phys & Astron, Seoul 08826, South Korea
[3] Natl Inst Math Sci, Div Basic Res Ind Math, Daejeon 34047, South Korea
[4] DESY, Notkestr 85, D-22607 Hamburg, Germany
[5] Ewha Womans Univ, Dept Phys, 52 Ewhayeodae Gil, Seoul 03760, South Korea
基金
新加坡国家研究基金会; 欧洲研究理事会; 美国国家科学基金会;
关键词
D O I
10.1103/PhysRevD.103.123023
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The waveform templates of the matched filtering-based gravitational-wave search ought to cover wide range of parameters for the prosperous detection. Numerical relativity (NR) has been widely accepted as the most accurate method for modeling the waveforms. Still, it is well known that NR typically requires a tremendous amount of computational costs. In this paper, we demonstrate a proof-of-concept of a novel deterministic deep learning (DL) architecture that can generate gravitational waveforms from the merger and ringdown phases of the non-spinning binary black hole coalescence. Our model takes O(1) seconds for generating approximately 1500 waveforms with a 99.9% match on average to one of the state-of-the-art waveform approximants, the effective-one-body. We also perform matched filtering with the DL-waveforms and find that the waveforms can recover the event time of the injected gravitational-wave signals.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Time-domain phenomenological model of gravitational-wave subdominant harmonics for quasicircular nonprecessing binary black hole coalescences
    Estelles, Hector
    Husa, Sascha
    Colleoni, Marta
    Keitel, David
    Mateu-Lucena, Maite
    Garcia-Quiros, Cecilio
    Ramos-Buades, Antoni
    Borchers, Angela
    PHYSICAL REVIEW D, 2022, 105 (08)
  • [22] Fast and Accurate Prediction of Numerical Relativity Waveforms from Binary Black Hole Coalescences Using Surrogate Models
    Blackman, Jonathan
    Field, Scott E.
    Galley, Chad R.
    Szilagyi, Bela
    Scheel, Mark A.
    Tiglio, Manuel
    Hemberger, Daniel A.
    PHYSICAL REVIEW LETTERS, 2015, 115 (12)
  • [23] Impact of Bayesian Priors on the Characterization of Binary Black Hole Coalescences
    Vitale, Salvatore
    Gerosa, Davide
    Haster, Carl-Johan
    Chatziioannou, Katerina
    Zimmerman, Aaron
    PHYSICAL REVIEW LETTERS, 2017, 119 (25)
  • [24] Gravitational-wave data analysis using binary black-hole waveforms
    Ajith, P.
    CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (11)
  • [25] Transition from inspiral to plunge in binary black hole coalescences
    Buonanno, A
    Damour, T
    PHYSICAL REVIEW D, 2000, 62 (06)
  • [26] Detectability of the subdominant mode in a binary black hole ringdown
    Bhagwat, Swetha
    Cabero, Miriam
    Capano, Collin D.
    Krishnan, Badri
    Brown, Duncan A.
    PHYSICAL REVIEW D, 2020, 102 (02)
  • [27] Effect of dark matter on galactic black hole ringdown waveforms and shadows
    Daghigh, Ramin G.
    Kunstatter, Gabor
    PHYSICAL REVIEW D, 2024, 109 (08)
  • [28] Sensitivity comparison of searches for binary black hole coalescences with ground-based gravitational-wave detectors
    Mohapatra, Satya
    Cadonati, Laura
    Caudill, Sarah
    Clark, James
    Hanna, Chad
    Klimenko, Sergey
    Pankow, Chris
    Vaulin, Ruslan
    Vedovato, Gabriele
    Vitale, Salvatore
    PHYSICAL REVIEW D, 2014, 90 (02):
  • [29] Modeling the gravitational wave signature of neutron star black hole coalescences
    Thompson, Jonathan E.
    Fauchon-Jones, Edward
    Khan, Sebastian
    Nitoglia, Elisa
    Pannarale, Francesco
    Dietrich, Tim
    Hannam, Mark
    PHYSICAL REVIEW D, 2020, 101 (12)
  • [30] Rapid Localization of Gravitational Wave Sources from Compact Binary Coalescences Using Deep Learning
    Chatterjee, Chayan
    Kovalam, Manoj
    Wen, Linqing
    Beveridge, Damon
    Diakogiannis, Foivos
    Vinsen, Kevin
    ASTROPHYSICAL JOURNAL, 2023, 959 (01):