On spatial periodic orbits and spatial chaos

被引:40
|
作者
Chen, GR [1 ]
Liu, ST
机构
[1] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
[2] Shandong Univ, Coll Sci & Engn, Inst Syst Sci, Shandong 250061, Peoples R China
来源
关键词
spatial chaos; spatial periodic orbit;
D O I
10.1142/S0218127403006935
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper introduces an analytical method for constructing spatial periodic orbits of specified periods. This result is then extended to generating spatial chaos in the sense of Li and Yorke.
引用
收藏
页码:935 / 941
页数:7
相关论文
共 50 条
  • [41] Periodic orbits and chaos in a class of discrete dynamic systems
    Zhang, YD
    Liu, ST
    Liu, YQ
    PROCEEDINGS OF THE 3RD WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-5, 2000, : 3247 - 3250
  • [42] Time-periodic spatial chaos in the complex Ginzburg-Landau equation
    Bazhenov, M
    Rabinovich, M
    Rubchinsky, L
    JOURNAL OF STATISTICAL PHYSICS, 1996, 83 (5-6) : 1165 - 1181
  • [43] Spatial periodic synchronization of chaos in coupled ring and linear arrays of chaotic systems
    Deng, XL
    Huang, HB
    PHYSICAL REVIEW E, 2002, 65 (05):
  • [44] UNIFORMITY AND SPATIAL CHAOS OF SPATIAL PHYSICS KINEMATIC SYSTEM
    Liu, Shutang
    Sun, Fuyan
    Sun, Jie
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (28): : 5495 - 5503
  • [45] SPATIAL AND TEMPORAL SCALING PROPERTIES OF STRANGE ATTRACTORS AND THEIR REPRESENTATIONS BY UNSTABLE PERIODIC-ORBITS
    MORITA, T
    HATA, H
    MORI, H
    HORITA, T
    TOMITA, K
    PROGRESS OF THEORETICAL PHYSICS, 1988, 79 (02): : 296 - 312
  • [46] Variational proof of the existence of periodic orbits in the spatial Hill problem and its constrained problems
    Iguchi, Shota
    Kajihara, Yuika
    Shibayama, Mitsuru
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2023, 40 (01) : 513 - 524
  • [47] Variational proof of the existence of periodic orbits in the spatial Hill problem and its constrained problems
    Shota Iguchi
    Yuika Kajihara
    Mitsuru Shibayama
    Japan Journal of Industrial and Applied Mathematics, 2023, 40 : 513 - 524
  • [48] UNSTABLE PERIODIC-ORBITS AND CHARACTERIZATION OF THE SPATIAL CHAOS IN A NONLINEAR MONATOMIC CHAIN AT THE T=0 FIRST-ORDER PHASE-TRANSITION POINT
    DEY, B
    PHYSICAL REVIEW B, 1995, 52 (01): : 220 - 224
  • [49] On generalized synchronization of spatial chaos
    Chen, GR
    Liu, ST
    CHAOS SOLITONS & FRACTALS, 2003, 15 (02) : 311 - 318
  • [50] EVOLUTIONARY GAMES AND SPATIAL CHAOS
    NOWAK, MA
    MAY, RM
    NATURE, 1992, 359 (6398) : 826 - 829