An Optimized Hybrid Fuzzy Weighted k-Nearest Neighbor with the Presence of Data Imbalance

被引:0
|
作者
Bahanshal, Soha A. [1 ]
Baraka, Rebhi S. [2 ]
Kim, Bayong [1 ]
Verdhan, Vaibhav [3 ]
机构
[1] Univ Massachusetts, Dept Comp Sci, Lowell, MA 01854 USA
[2] Islamic Univ Gaza, Dept Comp Sci, POB 108, Gaza, Palestine
[3] AstraZeneca, London, England
关键词
Imbalanced data; fuzzy weighted kNN; SMOTE; classification model; optimized hybrid kNN; CLASSIFICATION; ALGORITHMS;
D O I
10.14569/IJACSA.2022.0130476
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present an optimized hybrid fuzzy Weighted k-Nearest Neighbor classification model in the presence of imbalanced data. More attention is placed on data points in the boundary area between two classes. Finding greater results in the general classification of imbalanced data for both the minority and the majority classes. The fuzzy weighted approach assigns large weights to small classes and small weights to large classes. It improves the classification performance for the minority class. Experimental results show a higher average performance than other relevant algorithms, e.g., the variants of kNN with SMOTE such as Weighted kNN alone and Fuzzy kNN alone. The results also signify that the proposed approach makes the overall solution more robust. At the same time, the overall classification performance on the complete dataset is also increased, thereby improving the overall solution.
引用
收藏
页码:660 / 665
页数:6
相关论文
共 50 条
  • [21] Neighbor-weighted K-nearest neighbor for unbalanced text corpus
    Tan, SB
    EXPERT SYSTEMS WITH APPLICATIONS, 2005, 28 (04) : 667 - 671
  • [22] Fuzzy parameterized fuzzy soft k-nearest neighbor classifier
    Memis, S.
    Enginoglu, S.
    Erkan, U.
    NEUROCOMPUTING, 2022, 500 (351-378) : 351 - 378
  • [23] A Hybrid Fuzzy and K-Nearest Neighbor Approach for Debris Flow Disaster Prevention
    Su, Te-Jen
    Pan, Tzung-Shiarn
    Chang, Yung-Lu
    Lin, Shou-Sheu
    Hao, Miin-Jong
    IEEE ACCESS, 2022, 10 : 21787 - 21797
  • [24] Weighted k-nearest neighbor based data complexity metrics for imbalanced datasets
    Singh, Deepika
    Gosain, Anjana
    Saha, Anju
    STATISTICAL ANALYSIS AND DATA MINING, 2020, 13 (04) : 394 - 404
  • [25] Reverse k-nearest neighbor search in the presence of obstacles
    Gao, Yunjun
    Liu, Qing
    Miao, Xiaoye
    Yang, Jiacheng
    INFORMATION SCIENCES, 2016, 330 : 274 - 292
  • [26] An instance selection algorithm for fuzzy K-nearest neighbor
    Zhai, Junhai
    Qi, Jiaxing
    Zhang, Sufang
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (01) : 521 - 533
  • [27] Random projections fuzzy k-nearest neighbor(RPFKNN) for big data classification
    Popescu, Mihail
    Keller, James M.
    2016 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2016, : 1813 - 1817
  • [28] A COMBINED METHOD TO DEAL WITH UNCERTAIN DATA IN FUZZY K-NEAREST NEIGHBOR CLASSIFIER
    Cheng, Jianmei
    Yan, Li
    Zhang, Chao
    Pei, Zheng
    COMPUTATIONAL INTELLIGENCE: FOUNDATIONS AND APPLICATIONS: PROCEEDINGS OF THE 9TH INTERNATIONAL FLINS CONFERENCE, 2010, 4 : 282 - 287
  • [29] k-Nearest Neighbor Regressors Optimized by using Random Search
    Ortiz-Bejar, Jose
    Graff, Mario
    Tellez, Eric S.
    Ortiz-Bejar, Jesus
    Cerda Jacobo, Jaime
    2018 IEEE INTERNATIONAL AUTUMN MEETING ON POWER, ELECTRONICS AND COMPUTING (ROPEC), 2018,
  • [30] An Improved Weighted K-Nearest Neighbor Algorithm for Indoor Positioning
    Changgeng Li
    Zhengyang Qiu
    Changtong Liu
    Wireless Personal Communications, 2017, 96 : 2239 - 2251