Rotational Hypersurfaces Satisfying ΔIR = AR in the Four-Dimensional Euclidean Space

被引:12
|
作者
Guler, Erhan [1 ]
机构
[1] Bartin Univ, Fac Sci, Dept Math, TR-74100 Bartin, Turkey
来源
关键词
4-dimensional Euclidean space; Laplace-Beltrami operator; rotational hypersurface; curvature; SURFACES;
D O I
10.2339/politeknik.670333
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, rotational hypersurfaces in the 4-dimensional Euclidean space are discussed. Some relations of curvatures of hypersurfaces are given, such as the mean, Gaussian, and their minimality and flatness. In addition, Laplace-Beltrami operator has been defined for 4-dimensional hypersurfaces depending on the first fundamental form. Moreover, it is shown that each element of the 4 x 4 order matrix A, which satisfies the condition Delta R-I = AR, is zero, that is, the rotational hypersurface R is minimal.
引用
收藏
页码:517 / 520
页数:4
相关论文
共 50 条
  • [31] CHEN ROTATIONAL SURFACES OF HYPERBOLIC OR ELLIPTIC TYPE IN THE FOUR-DIMENSIONAL MINKOWSKI SPACE
    Ganchev, Georgi
    Milousheva, Velichka
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2011, 64 (05): : 641 - 652
  • [32] EXPLICIT SOLVING OF THE SYSTEM OF NATURAL PDE'S OF MINIMAL SURFACES IN THE FOUR-DIMENSIONAL EUCLIDEAN SPACE
    Ganchev, Georgi
    Kanchev, Krasimir
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2014, 67 (05): : 623 - 628
  • [33] Totally geodesic hypersurfaces of four-dimensional generalized symmetric spaces
    Barbara De Leo
    Joeri Van der Veken
    Geometriae Dedicata, 2012, 159 : 373 - 387
  • [34] Totally Geodesic and Parallel Hypersurfaces of Four-Dimensional Oscillator Groups
    Giovanni Calvaruso
    Joeri Van der Veken
    Results in Mathematics, 2013, 64 : 135 - 153
  • [35] Totally geodesic hypersurfaces of four-dimensional generalized symmetric spaces
    De Leo, Barbara
    Van der Veken, Joeri
    GEOMETRIAE DEDICATA, 2012, 159 (01) : 373 - 387
  • [36] Four-dimensional locally strongly convex homogeneous affine hypersurfaces
    Chikh Salah A.
    Vrancken L.
    Journal of Geometry, 2017, 108 (1) : 119 - 147
  • [37] A four-dimensional space for action perception?
    Vinton, Laura C.
    Tipper, Steven P.
    Barraclough, Nick E.
    I-PERCEPTION, 2021, 12 (04): : 5 - 5
  • [38] The Goursat problem in the four-dimensional space
    Zhegalov, VI
    Sevastyanov, VA
    DIFFERENTIAL EQUATIONS, 1996, 32 (10) : 1427 - 1428
  • [39] On one space of four-dimensional numbers
    Rakhymova, A. T.
    Gabbassov, M. B.
    Shapen, K. M.
    JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2020, 108 (04): : 81 - 98
  • [40] On the Cauchy problem in the four-dimensional space
    Mironov, AN
    DIFFERENTIAL EQUATIONS, 2004, 40 (06) : 903 - 907