Emerging notions of norm attainment for Lipschitz maps between Banach spaces

被引:6
|
作者
Choi, Geunsu [1 ]
Choi, Yun Sung [1 ]
Martin, Miguel [2 ]
机构
[1] POSTECH, Dept Math, Pohang 790784, South Korea
[2] Univ Granada, Fac Ciencias, Dept Analisis Matemat, E-18071 Granada, Spain
基金
新加坡国家研究基金会;
关键词
Banach space; Norm attainment; Lipschitz map; Lipschitz function; Uniformly convex Banach space; BISHOP-PHELPS-BOLLOBAS; PROPERTY; THEOREM;
D O I
10.1016/j.jmaa.2019.123600
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We classify several notions of norm attaining Lipschitz maps which were introduced previously, and present the relations among them in order to verify proper inclusions. We also analyze some results for the sets of Lipschitz maps satisfying each of these properties to be dense or not in Lipo (X, Y). For instance, we characterize a Banach space Y with the Radon-NikodYm property in terms of the denseness of norm attaining Lipschitz maps with values in Y. Further, we introduce a property called the local directional Bishop-Phelps-Bollobas property for Lipschitz compact maps, which extends the one studied previously for scalar-valued functions, and provide some new positive results. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Separation ratios of maps between Banach spaces
    Rosendal, Christian
    COMPTES RENDUS MATHEMATIQUE, 2023, 361 (01) : 1663 - 1672
  • [22] On quasi norm attaining operators between Banach spaces
    Choi, Geunsu
    Choi, Yun Sung
    Jung, Mingu
    Martin, Miguel
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (03)
  • [23] On quasi norm attaining operators between Banach spaces
    Geunsu Choi
    Yun Sung Choi
    Mingu Jung
    Miguel Martín
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [24] Norm estimates for matrix operators between Banach spaces
    Mastylo, Mieczyslaw
    Mleczko, Pawel
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (03) : 986 - 1001
  • [25] Lipschitz continuity of harmonic maps between Alexandrov spaces
    Zhang, Hui-Chun
    Zhu, Xi-Ping
    INVENTIONES MATHEMATICAE, 2018, 211 (03) : 863 - 934
  • [26] Extending Lipschitz and Holder maps between metric spaces
    Ohta, Shin-ichi
    POSITIVITY, 2009, 13 (02) : 407 - 425
  • [27] Lipschitz continuity of harmonic maps between Alexandrov spaces
    Hui-Chun Zhang
    Xi-Ping Zhu
    Inventiones mathematicae, 2018, 211 : 863 - 934
  • [28] On strongly norm attaining Lipschitz maps
    Cascales, Bernardo
    Chiclana, Rafael
    Garcia-Lirola, Luis C.
    Martin, Miguel
    Rueda Zoca, Abraham
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (06) : 1677 - 1717
  • [29] MAXIMAL BANACH IDEALS OF LIPSCHITZ MAPS
    Cabrera-Padilla, M. G.
    Chavez-Dominguez, J. A.
    Jimenez-Vargas, A.
    Villegas-Vallecillos, Moises
    ANNALS OF FUNCTIONAL ANALYSIS, 2016, 7 (04): : 593 - 608
  • [30] Notions of Relative Interior in Banach Spaces
    J. Borwein
    R. Goebel
    Journal of Mathematical Sciences, 2003, 115 (4) : 2542 - 2553