Spontaneous light-mediated magnetism in cold atoms

被引:18
|
作者
Kresic, I [1 ,2 ,3 ]
Labeyrie, G. [4 ]
Robb, G. R. M. [1 ,2 ]
Oppo, G-L [1 ,2 ]
Gomes, P. M. [1 ,2 ]
Griffin, P. [1 ,2 ]
Kaiser, R. [4 ]
Ackemann, T. [1 ,2 ]
机构
[1] Univ Strathclyde, SUPA, Glasgow G4 0NG, Lanark, Scotland
[2] Univ Strathclyde, Dept Phys, Glasgow G4 0NG, Lanark, Scotland
[3] Inst Phys, Bijenicka Cesta 46, Zagreb 10000, Croatia
[4] Univ Cote dAzur, CNRS, Inst Phys Nice, 1361 Route Lucioles, F-06560 Valbonne, France
来源
COMMUNICATIONS PHYSICS | 2018年 / 1卷
基金
欧盟地平线“2020”;
关键词
COUNTERPROPAGATING LASER-BEAMS; PATTERN-FORMATION; PHASE-TRANSITION; INSTABILITIES; DYNAMICS; VAPOR; GAS; BREAKING; MIRROR; FIELD;
D O I
10.1038/s42005-018-0034-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Cold atom setups are now commonly employed in simulations of condensed matter phenomena. We present an approach to induce strong magnetic interactions between atoms on a self-organized lattice using diffraction of light. Diffractive propagation of structured light fields leads to an exchange between phase and amplitude modulated planes which can be used to couple atomic degrees of freedom via optical pumping nonlinearities. In the experiment a cold cloud of Rb atoms placed near a retro-reflecting mirror is driven by a detuned pump laser. We demonstrate spontaneous magnetic ordering in the Zeeman sub-levels of the atomic ground state: anti-ferromagnetic structures on a square lattice and ferrimagnetic structures on a hexagonal lattice in zero and a weak longitudinal magnetic field, respectively. The ordered state is destroyed by a transverse magnetic field via coherent dynamics. A connection to the transverse (quantum) Ising model is drawn.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Light-mediated remote control of signaling pathways
    Priestman, Melanie A.
    Lawrence, David S.
    BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2010, 1804 (03): : 547 - 558
  • [42] Visible light-mediated halogenation of organic compounds
    Festa, Alexey A.
    Storozhenko, Olga A.
    Voskressensky, Leonid G.
    van der Eycken, Erik V.
    CHEMICAL SOCIETY REVIEWS, 2023, 52 (24) : 8678 - 8698
  • [43] Visible light-mediated living radical polymerization
    Fors, Brett P.
    Hawker, Craig J.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [44] UV light-mediated alkylation of inorganic selenium
    Guo, XM
    Sturgeon, RE
    Mester, Z
    Gardner, GJ
    APPLIED ORGANOMETALLIC CHEMISTRY, 2003, 17 (08) : 575 - 579
  • [45] Light-mediated Zn uptake in photosynthetic biofilm
    Jeffrey M. Morris
    Aïda M. Farag
    David A. Nimick
    Joseph S. Meyer
    Hydrobiologia, 2006, 571 : 361 - 371
  • [46] Light-Mediated Sulfur-Boron Exchange
    Panferova, Liubov, I
    Dilman, Alexander D.
    ORGANIC LETTERS, 2021, 23 (10) : 3919 - 3922
  • [47] Nanomaterials for light-mediated therapeutics in deep tissue
    Tsang, Chung Yin
    Zhang, Yong
    CHEMICAL SOCIETY REVIEWS, 2024, 53 (06) : 2898 - 2931
  • [48] LIGHT-MEDIATED ACTIVATION OF STROMAL SEDOHEPTULOSE BISPHOSPHATASE
    WOODROW, IE
    WALKER, DA
    BIOCHEMICAL JOURNAL, 1980, 191 (03) : 845 - 849
  • [49] Light-Mediated Carboxylation Using Carbon Dioxide
    Fan, Zhengning
    Zhang, Zeyu
    Xi, Chanjuan
    CHEMSUSCHEM, 2020, 13 (23) : 6201 - 6218
  • [50] Editorial: Light-mediated regulation of plant physiology
    Romanowski, Andres
    Monte, Elena
    Hernando, Carlos Esteban
    Toledo-Ortiz, Gabriela
    Christie, John M.
    Moreno-Romero, Jordi
    Halliday, Karen J.
    FRONTIERS IN PLANT SCIENCE, 2025, 15