IoT Intrusion Detection Using Machine Learning with a Novel High Performing Feature Selection Method

被引:66
|
作者
Albulayhi, Khalid [1 ]
Abu Al-Haija, Qasem [2 ]
Alsuhibany, Suliman A. [3 ]
Jillepalli, Ananth A. [4 ]
Ashrafuzzaman, Mohammad [5 ]
Sheldon, Frederick T. [1 ]
机构
[1] Univ Idaho, Comp Sci Dept, Moscow, ID 83844 USA
[2] Princess Sumaya Univ Technol PSUT, Dept Comp Sci Cybersecur, Amman 11941, Jordan
[3] Qassim Univ, Coll Comp, Dept Comp Sci, Buraydah 51452, Saudi Arabia
[4] Washington State Univ, Sch Elect Engn & Comp Sci, Pullman, WA 99164 USA
[5] Ashland Univ, Dept Math & Comp Sci, Ashland, OH 44805 USA
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 10期
关键词
cybersecurity; anomaly detection accuracy; feature selection; Internet of Things (IoT); intrusion detection system; and machine learning; DETECTION SYSTEM; MUTUAL INFORMATION; INTERNET; MODEL;
D O I
10.3390/app12105015
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The Internet of Things (IoT) ecosystem has experienced significant growth in data traffic and consequently high dimensionality. Intrusion Detection Systems (IDSs) are essential self-protective tools against various cyber-attacks. However, IoT IDS systems face significant challenges due to functional and physical diversity. These IoT characteristics make exploiting all features and attributes for IDS self-protection difficult and unrealistic. This paper proposes and implements a novel feature selection and extraction approach (i.e., our method) for anomaly-based IDS. The approach begins with using two entropy-based approaches (i.e., information gain (IG) and gain ratio (GR)) to select and extract relevant features in various ratios. Then, mathematical set theory (union and intersection) is used to extract the best features. The model framework is trained and tested on the IoT intrusion dataset 2020 (IoTID20) and NSL-KDD dataset using four machine learning algorithms: Bagging, Multilayer Perception, J48, and IBk. Our approach has resulted in 11 and 28 relevant features (out of 86) using the intersection and union, respectively, on IoTID20 and resulted 15 and 25 relevant features (out of 41) using the intersection and union, respectively, on NSL-KDD. We have further compared our approach with other state-of-the-art studies. The comparison reveals that our model is superior and competent, scoring a very high 99.98% classification accuracy.
引用
收藏
页数:30
相关论文
共 50 条
  • [31] LEMDA: A Novel Feature Engineering Method for Intrusion Detection in IoT Systems
    Ghubaish, Ali
    Yang, Zebo
    Erbad, Aiman
    Jain, Raj
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (08): : 13247 - 13256
  • [32] Lightweight Intrusion Detection Based on Hybrid Feature Selection Machine Learning
    Xia, Guoxin
    Zhao, Yanqiao
    Han, Chaohui
    Zhao, Xiaosong
    Zhang, Lei
    39TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION, YAC 2024, 2024, : 1392 - 1395
  • [33] Network Intrusion Detection Through Machine Learning With Efficient Feature Selection
    Desai, Rohan
    Gopalakrishnan, Venkatesh Tiruchirai
    2023 15TH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS & NETWORKS, COMSNETS, 2023,
  • [34] Automatic Feature Extraction and Selection For Machine Learning Based Intrusion Detection
    Liu, Jinjie
    Chung, Sun Sunnie
    2019 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI 2019), 2019, : 1400 - 1405
  • [35] Machine learning-based intrusion detection: feature selection versus feature extraction
    Ngo, Vu-Duc
    Vuong, Tuan-Cuong
    Van Luong, Thien
    Tran, Hung
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (03): : 2365 - 2379
  • [36] Enhancing IoT Network Security Using Feature Selection for Intrusion Detection Systems
    Almohaimeed, Muhannad
    Albalwy, Faisal
    APPLIED SCIENCES-BASEL, 2024, 14 (24):
  • [37] Hybrid wrapper feature selection method based on genetic algorithm and extreme learning machine for intrusion detection
    Maseno, Elijah M.
    Wang, Zenghui
    JOURNAL OF BIG DATA, 2024, 11 (01)
  • [38] Hybrid wrapper feature selection method based on genetic algorithm and extreme learning machine for intrusion detection
    Elijah M. Maseno
    Zenghui Wang
    Journal of Big Data, 11
  • [39] Wrapper feature selection method based differential evolution and extreme learning machine for intrusion detection system
    Al-Yaseen, Wathiq Laftah
    Idrees, Ali Kadhum
    Almasoudy, Faezah Hamad
    PATTERN RECOGNITION, 2022, 132
  • [40] Intrusion Detection using Network Traffic Profiling and Machine Learning for IoT
    Ben Slimane, Jihane
    Abd-Elkawy, Eman H.
    Maqbool, Albia
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (03) : 2140 - 2149