MERAV: a tool for comparing gene expression across human tissues and cell types

被引:99
|
作者
Shaul, Yoav D. [1 ,2 ,3 ]
Yuan, Bingbing [1 ]
Thiru, Prathapan [1 ]
Nutter-Upham, Andy [1 ]
McCallum, Scott [1 ]
Lanzkron, Carolyn [1 ,4 ]
Bell, George W. [1 ]
Sabatini, David M. [1 ,2 ,4 ,5 ,6 ]
机构
[1] Whitehead Inst Biomed Res, 9 Cambridge Ctr, Cambridge, MA 02142 USA
[2] Koch Inst Integrat Canc Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Hebrew Univ Jerusalem, Hadassah Med Sch, Dept Biochem & Mol Biol, Inst Med Res Israel Canada, IL-91120 Jerusalem, Israel
[4] MIT, Dept Biol, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[5] MIT, Dept Biol, Howard Hughes Med Inst, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[6] Broad Inst, Cambridge, MA 02142 USA
基金
美国国家卫生研究院;
关键词
NCBI GEO; CANCER; MICROARRAY; DATABASE; INTEGRATION; COLLECTION; PATHWAYS; SURVIVAL; BIOGPS; LINES;
D O I
10.1093/nar/gkv1337
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The oncogenic transformation of normal cells into malignant, rapidly proliferating cells requires major alterations in cell physiology. For example, the transformed cells remodel their metabolic processes to supply the additional demand for cellular building blocks. We have recently demonstrated essential metabolic processes in tumor progression through the development of a methodological analysis of gene expression. Here, we present the Metabolic gEne RApid Visualizer (MERAV, http://merav.wi.mit.edu), a web-based tool that can query a database comprising similar to 4300 microarrays, representing human gene expression in normal tissues, cancer cell lines and primary tumors. MERAV has been designed as a powerful tool for whole genome analysis which offers multiple advantages: one can search many genes in parallel; compare gene expression among different tissue types as well as between normal and cancer cells; download raw data; and generate heatmaps; and finally, use its internal statistical tool. Most importantly, MERAV has been designed as a unique tool for analyzing metabolic processes as it includes matrixes specifically focused on metabolic genes and is linked to the Kyoto Encyclopedia of Genes and Genomes pathway search.
引用
收藏
页码:D560 / D566
页数:7
相关论文
共 50 条
  • [21] Differential expression of human polycomb group proteins in various tissues and cell types
    Gunster, MJ
    Raaphorst, FM
    Hamer, KM
    den Blaauwen, JL
    Fieret, E
    Meijer, CJLM
    Otte, AP
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2001, : 129 - 143
  • [22] LaminaRGeneVis: A Tool to Visualize Gene Expression Across the Laminar Architecture of the Human Neocortex
    Kim, Ethan H. H.
    Howard, Derek
    Chen, Yuxiao
    Tripathy, Shreejoy J. J.
    French, Leon
    FRONTIERS IN NEUROINFORMATICS, 2022, 16
  • [23] Aberrant expression prediction across human tissues
    Holzlwimmer, Florian
    Lindner, Jonas
    Wagner, Nils
    Casale, Francesco Paolo
    Gagneur, Julien
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2024, 32 : 1668 - 1668
  • [24] Distribution of miRNA expression across human tissues
    Ludwig, Nicole
    Leidinger, Petra
    Becker, Kurt
    Backes, Christina
    Fehlmann, Tobias
    Pallasch, Christian
    Rheinheimer, Steffi
    Meder, Benjamin
    Staehler, Cord
    Meese, Eckart
    Keller, Andreas
    NUCLEIC ACIDS RESEARCH, 2016, 44 (08) : 3865 - 3877
  • [25] Quantitative analysis of Y-Chromosome gene expression across 36 human tissues
    Godfrey, Alexander K.
    Naqvi, Sahin
    Chmatal, Lukas
    Chick, Joel M.
    Mitchell, Richard N.
    Gygi, Steven P.
    Skaletsky, Helen
    Page, David C.
    GENOME RESEARCH, 2020, 30 (06) : 860 - 873
  • [26] Inferring CTCF-binding patterns and anchored loops across human tissues and cell types
    Xu, Hang
    Yi, Xianfu
    Fan, Xutong
    Wu, Chengyue
    Wang, Wei
    Chu, Xinlei
    Zhang, Shijie
    Dong, Xiaobao
    Wang, Zhao
    Wang, Jianhua
    Zhou, Yao
    Zhao, Ke
    Yao, Hongcheng
    Zheng, Nan
    Wang, Junwen
    Chen, Yupeng
    Plewczynski, Dariusz
    Sham, Pak Chung
    Chen, Kexin
    Huang, Dandan
    Jun, Mulin
    PATTERNS, 2023, 4 (08):
  • [27] From Tissues to Cell Types and Back: Single-Cell Gene Expression Analysis of Tissue Architecture
    Chen, Xi
    Teichmann, Sarah A.
    Meyer, Kerstin B.
    ANNUAL REVIEW OF BIOMEDICAL DATA SCIENCE, VOL 1, 2018, 1 : 29 - 51
  • [28] The impact of rare variation on gene expression across tissues
    Xin Li
    Yungil Kim
    Emily K. Tsang
    Joe R. Davis
    Farhan N. Damani
    Colby Chiang
    Gaelen T. Hess
    Zachary Zappala
    Benjamin J. Strober
    Alexandra J. Scott
    Amy Li
    Andrea Ganna
    Michael C. Bassik
    Jason D. Merker
    Ira M. Hall
    Alexis Battle
    Stephen B. Montgomery
    Nature, 2017, 550 : 239 - 243
  • [29] The impact of rare variation on gene expression across tissues
    Li, Xin
    Kim, Yungil
    Sang, Emily K. T.
    Davis, Joe R. .
    Damani, Farhan N.
    Hiang, Colby C.
    Hess, Gaelen T. .
    Zappala, Zachary
    Strober, Benjamin J.
    Scott, Alexandra J.
    Li, Amy
    Ganna, Andrea
    Assik, Michael C. . B.
    Merker, Jason D.
    Hall, Ira M.
    Attle, Alexis B.
    Montgomery, Stephen B. .
    NATURE, 2017, 550 (7675) : 239 - +
  • [30] Fibroblast atlas: Shared and specific cell types across tissues
    Liu, Kaidong
    Cui, Yanrui
    Han, Huiming
    Guo, Erliang
    Shi, Xingyang
    Xiong, Kai
    Zhang, Nan
    Zhai, Songmei
    Sang, Shaocong
    Liu, Mingyue
    Chen, Bo
    Gu, Yunyan
    SCIENCE ADVANCES, 2025, 11 (14):