In vivo injectable human adipose tissue regeneration by adipose-derived stem cells isolated from the fluid portion of liposuction aspirates

被引:12
|
作者
Dong, Ziqing [1 ]
Luo, Lin [1 ]
Liao, Yunjun [1 ]
Zhang, Yunsong [1 ]
Gao, Jianhua [1 ]
Ogawa, Rei [2 ]
Ou, Chunquan [3 ]
Zhu, Ming [1 ]
Yang, Bo [1 ]
Lu, Feng [1 ]
机构
[1] Southern Med Univ, Nanfang Hosp, Dept Plast & Reconstruct Surg, Guangzhou 510515, Guangdong, Peoples R China
[2] Nippon Med Sch, Dept Plast Reconstruct & Aesthet Surg, Tokyo 113, Japan
[3] Southern Med Univ, Sch Publ Hlth & Trop Med, Dept Biostat, Guangzhou 510515, Guangdong, Peoples R China
来源
TISSUE & CELL | 2014年 / 46卷 / 03期
关键词
Adipose tissue regeneration; Adipose tissue-derived stem cells; Injectable; Fluid portion; Fibrin glue; STROMAL CELLS; PROGENITOR CELLS; SKIN FLAPS; DIFFERENTIATION; AUGMENTATION; THERAPIES; MEDICINE;
D O I
10.1016/j.tice.2014.04.001
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
Liposuction aspirates separate into fatty and fluid portions. Cells isolated from the fatty portion are termed processed lipoaspirate (PLA) cells and isolated from the fluid portion termed liposuction aspirate fluid (LAF) cells, both of which contain adipose-derived stromal cells (ASCs). Here, we examined the biological differences between PLA and LAF cells and then tested the differentiation capacity of LAF cells in vivo. The cell surface marker and the multiple differentiation ability of fresh isolated PLA and LAF cells and which from passaged 3-5 were examined in vitro. LAF cells were then incubated in adipogenic medium, stained with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine (DiI), mixed with fibrin glue then injected to nude mice; fibrin glue without cells was as a control. Three months later, the transplants were subjected to macroscopic observation and histological analysis. PLA and LAF cells were similar in growth kinetics, morphology, capacity for differentiation, and surface marker profiles. After plating, both PLA and LAF cells showed increased expression of CD29, CD44, CD133 and HLA DR and decreased expression of CD34. In vivo differentiation assay showed the mixture of LAF cells and fibrin glue formed adipose tissue which contained red fluorescent DiI-positive adipocytes. LAF cells can be harvested more easily than PLA cells. The in vivo adipogenic capacity suggested LAF cells would be useful and valuable for cell-based therapies and soft tissue reconstruction. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:178 / 184
页数:7
相关论文
共 50 条
  • [31] Human Adipose-Derived Mesenchymal Stem Cells Promote Liver Regeneration
    Saidi, Reza
    Rajeshkumar, R.
    Shariftabrizi, A.
    Zimmerman, A.
    Walter, O.
    JOURNAL OF INVESTIGATIVE SURGERY, 2015, 28 (06) : 303 - 308
  • [32] Adipose tissue engineering by human adipose-derived stromal cells
    Hong, Liu
    Peptan, Ioana A.
    Colpan, Aylin
    Daw, Joseph L.
    CELLS TISSUES ORGANS, 2006, 183 (03) : 133 - 140
  • [33] Distribution of adipose-derived stem cells in adipose tissues from human cadavers
    Kishi, Kazuo
    Imanishi, Nobuaki
    Ohara, Hirotoshi
    Ninomiya, Ruka
    Okabe, Keisuke
    Hattori, Noriko
    Kubota, Yoshiaki
    Nakajima, Hideo
    Nakajima, Tatsuo
    JOURNAL OF PLASTIC RECONSTRUCTIVE AND AESTHETIC SURGERY, 2010, 63 (10): : 1717 - 1722
  • [34] Adipose tissue engineering using adipose-derived stem cells and fibrin
    Peterbauer, A.
    Neussl, S.
    Schauer, K.
    Hofer, K.
    Gueven, S.
    Gabriel, C.
    Redl, H.
    van Griensven, M.
    Wolbank, S.
    TISSUE ENGINEERING PART A, 2008, 14 (05) : 805 - 806
  • [35] Does the liposuction method influence the phenotypic characteristic of human adipose-derived stem cells?
    Bajek, Anna
    Gurtowska, Natalia
    Gackowska, Lidia
    Kubiszewska, Izabela
    Bodnar, Magdalena
    Marszalek, Andrzej
    Januszewski, Rafal
    Michalkiewicz, Jacek
    Drewa, Tomasz
    BIOSCIENCE REPORTS, 2015, 35 : 1 - 9
  • [36] Adipose-derived stem cells for wound repair and regeneration
    Shingyochi, Yoshiaki
    Orbay, Hakan
    Mizunot, Hiroshi
    EXPERT OPINION ON BIOLOGICAL THERAPY, 2015, 15 (09) : 1285 - 1292
  • [37] Adipose-derived stem cells for wound repair and regeneration
    Mizuno, Hiroshi
    WOUND REPAIR AND REGENERATION, 2009, 17 (01) : A9 - A9
  • [38] Adipose-derived stem cells for the regeneration of damaged tissues
    Parker, Anna M.
    Katz, Adam J.
    EXPERT OPINION ON BIOLOGICAL THERAPY, 2006, 6 (06) : 567 - 578
  • [39] Adipose-derived stem cells: A candidate for liver regeneration
    Yang, Dan
    Wang, Zhong Qiong
    Deng, Jia Qi
    Liao, Jing Yuan
    Wang, Xuan
    Xie, Jing
    Deng, Ming Ming
    Lu, Mu Han
    JOURNAL OF DIGESTIVE DISEASES, 2015, 16 (09) : 489 - 498
  • [40] Adipose-derived stem cells in peripheral nerve regeneration
    Leberfinger A.N.
    Ravnic D.J.
    Payne R.
    Rizk E.
    Koduru S.V.
    Hazard S.W., III
    Current Surgery Reports, 5 (2)