On consecutive integers divisible by the number of their divisors

被引:0
|
作者
Andreescu, Titu [1 ]
Luca, Florian [2 ]
Phaovibul, M. Tip [3 ]
机构
[1] Univ Texas Dallas, Dept Sci Math & Educ, FN32,800 West Campbell Rd, Richardson, TX 75080 USA
[2] Univ Witwatersrand, Sch Math, Private Bag X3, ZA-2050 Johannesburg, South Africa
[3] POB 749, Mosier, OR 97040 USA
关键词
divisors; Pell equations; sieve methods;
D O I
10.4064/aa8242-1-2016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:269 / 281
页数:13
相关论文
共 50 条
  • [41] Integers divisible by a large shifted prime
    Ford, Kevin
    ACTA ARITHMETICA, 2017, 178 (02) : 163 - 180
  • [42] COPRIME INTEGERS IN A SET OF CONSECUTIVE INTEGERS
    MARCUS, D
    AMERICAN MATHEMATICAL MONTHLY, 1969, 76 (10): : 1144 - &
  • [43] Ratio of consecutive divisors
    Chapman, R
    AMERICAN MATHEMATICAL MONTHLY, 2006, 113 (05): : 464 - 464
  • [44] ON DIVISORS OF SUMS OF INTEGERS .2.
    SARKOZY, A
    STEWART, CL
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1986, 365 : 171 - 191
  • [45] ON DIVISORS OF SUMS OF INTEGERS .1.
    SARKOZY, A
    STEWART, CL
    ACTA MATHEMATICA HUNGARICA, 1986, 48 (1-2) : 147 - 154
  • [46] ON DIVISORS OF SUMS OF INTEGERS .5.
    SARKOZY, A
    STEWART, CL
    PACIFIC JOURNAL OF MATHEMATICS, 1994, 166 (02) : 373 - 384
  • [47] THE NUMBER OF SUBSETS OF THE SET [n] CONTAINING NO TWO CONSECUTIVE EVEN INTEGERS
    Uslu, Kemal
    Arslan, Baris
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2021, 52 (02): : 243 - 254
  • [48] The Number of Relatively Prime Subset of a Finite Union of Sets of Consecutive Integers
    Ayad, Mohamed
    Coia, Vincenzo
    Kihel, Omar
    JOURNAL OF INTEGER SEQUENCES, 2014, 17 (03)
  • [49] NUMBER OF SUBSETS OF THE SET [n] INCLUDING NO TWO CONSECUTIVE ODD INTEGERS
    Uslu, Kemal
    Arslan, Baris
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2021, 28 (02): : 357 - 368
  • [50] DIVISORS OF INTEGERS IN ARITHMETIC-PROGRESSION
    VARBANEC, PD
    ZARZYCKI, P
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1990, 33 (02): : 129 - 134