Growth kinetics of basic ammonothermal gallium nitride crystals

被引:10
|
作者
Griffiths, S. [1 ]
Pimputkar, S. [1 ]
Kearns, J. [1 ]
Malkowski, T. F. [1 ]
Doherty, M. F. [2 ]
Speck, J. S. [1 ]
Nakamura, S. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA
关键词
Ammonothermal; Bulk GaN; Nitrides; Kinetics; Crystal growth; SUPERCRITICAL AMMONIA; GAN; HYDROGEN; NICKEL; PERMEABILITY; SOLUBILITY; MORPHOLOGY; PRESSURE;
D O I
10.1016/j.jcrysgro.2018.08.028
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
The ammonothermal method has been extensively studied for the last two decades because of its potential to produce high-quality bulk gallium nitride (GaN) boules at low cost. Currently, the ammonothermal literature lacks in situ, internal fluid temperature measurements during the crystal growth process. This study reports on internal fluid temperature measured simultaneously in the dissolution and growth zones for twelve basic ammonothermal GaN growth experiments (pressure range = 180-261 MPa; molar NH3:Na fill ratio = 20:1) on {0 0 0 1} and {1 0 (1) over bar 0}-orientation GaN seeds. Knowledge of the fluid temperature combined with mass-change measurements of the polycrystalline source and seed crystals has enabled the distinction of three growth regimes: a mass transport-limited regime at internal fluid density differences below 1.2 mol/L between dissolution and growth zones; a surface reaction-limited regime above the aforementioned critical fluid density difference and below growth zone fluid temperatures of similar to 570 degrees C; and an apparent loss of solvent-limited regime above growth zone fluid temperatures of similar to 570 degrees C. Analysis of growth in [0 0 0 1], [0 0 0 (1) over bar ], and [1 0 (1) over bar 0] has enabled the determination of activation energies of each respective GaN crystallographic orientation in the surface reaction-limited regime.
引用
收藏
页码:74 / 80
页数:7
相关论文
共 50 条
  • [31] Ammonothermal synthesis of aluminum nitride crystals on group III-nitride templates
    B. T. Adekore
    K. Rakes
    B. Wang
    M. J. Callahan
    S. Pendurti
    Z. Sitar
    Journal of Electronic Materials, 2006, 35 : 1104 - 1111
  • [32] Basic ammonothermal GaN growth in molybdenum capsules
    Pimputkar, S.
    Speck, J. S.
    Nakamura, S.
    JOURNAL OF CRYSTAL GROWTH, 2016, 456 : 15 - 20
  • [33] Ammonothermal growth of GaN crystals in alkaline solutions
    Wang, BG
    Callahan, MJ
    Rakes, KD
    Bouthillette, LO
    Wang, SQ
    Bliss, DF
    Kolis, JW
    JOURNAL OF CRYSTAL GROWTH, 2006, 287 (02) : 376 - 380
  • [34] Growth of GaN crystals under ammonothermal conditions
    Callahan, MJ
    Wang, BG
    Bouthillette, LO
    Wang, SQ
    Kolis, JW
    Bliss, DF
    GAN AND RELATED ALLOYS - 2003, 2003, 798 : 263 - 268
  • [35] Modeling on ammonothermal growth of GaN semiconductor crystals
    Chen, Qi-Sheng
    Yan, Jun-Yi
    Jiang, Yan-Ni
    Li, Wei
    PROGRESS IN CRYSTAL GROWTH AND CHARACTERIZATION OF MATERIALS, 2012, 58 (2-3) : 61 - 73
  • [36] Acidic ammonothermal growth of bulk GaN crystals
    Ehrentraut, Dirk
    Fukuda, Tsuguo
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2008, 64 : C19 - C20
  • [37] Improved growth rates and purity of basic ammonothermal GaN
    Pimputkar, S.
    Kawabata, S.
    Speck, J. S.
    Nakamura, S.
    JOURNAL OF CRYSTAL GROWTH, 2014, 403 : 7 - 17
  • [38] Linear piezoelectricity material constants for ammonothermal gallium nitride measured by bulk acoustic waves
    Witczak, P.
    Witczak, Z.
    Jemielniak, R.
    Krysko, M.
    Krukowski, S.
    Bockowski, M.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2015, 30 (03)
  • [39] Recent progress in basic ammonothermal GaN crystal growth
    Grabianska, K.
    Kucharski, R.
    Puchalski, A.
    Sochacki, T.
    Bockowski, M.
    JOURNAL OF CRYSTAL GROWTH, 2020, 547 (547)
  • [40] Basic Ammonothermal Growth of GaN in Silver Lined Autoclave
    Pimputkar, S.
    Kawabata, S.
    Speck, J.
    Nakamura, S.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2014, 70 : C1416 - C1416