The boundary integral method for magnetic billiards

被引:18
|
作者
Hornberger, K [1 ]
Smilansky, U
机构
[1] Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, Israel
[2] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
来源
关键词
D O I
10.1088/0305-4470/33/14/315
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a boundary integral method for two-dimensional quantum billiards subjected to a constant magnetic field, it allows us to calculate spectra and wavefunctions, in particular at strong fields and semiclassical values of the magnetic length. The method is presented for interior and exterior problems with general boundary conditions. We explain why the magnetic analogues of the field-free single- and double-layer equations exhibit an infinity of spurious solutions and how these can be eliminated at the expense of dealing with (hyper-)singular operators. The high efficiency of the method is demonstrated by numerical calculations in the extreme semiclassical regime.
引用
收藏
页码:2829 / 2855
页数:27
相关论文
共 50 条
  • [41] Solution of the Poisson equation by the boundary integral method
    Das, Sandipan Kumar
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2024, 34 (10) : 3843 - 3881
  • [42] An integral method for the compressible laminar boundary layer
    Pozzi, A.
    Mazzei, L.
    Journal of Heat Transfer, 1998, 120 (02): : 505 - 506
  • [44] Error analysis for the implicit boundary integral method
    Zhong, Yimin
    Ren, Kui
    Runborg, Olof
    Tsai, Richard
    BIT NUMERICAL MATHEMATICS, 2025, 65 (01)
  • [45] VECTORIZATION OF A BOUNDARY INTEGRAL-EQUATION METHOD
    SKOURUP, J
    SVENDSEN, I
    LARSEN, J
    SUPERCOMPUTER, 1988, 5 (01): : 26 - 32
  • [46] INTEGRAL METHOD OF BOUNDARY CHARACTERISTICS: NEUMANN CONDITION
    Kot, V. A.
    JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS, 2018, 91 (02) : 445 - 470
  • [47] Curved boundary integral method for electromagnetic fields
    Lamberg, Joel
    Zarrinkhat, Faezeh
    Tamminen, Aleksi
    Ala-Laurinaho, Juha
    Rius, Juan
    Romeu, Jordi
    Khaled, Elsayed E. M.
    Taylor, Zachary
    OPTICS EXPRESS, 2023, 31 (26) : 43583
  • [48] A study of emulsion expansion by a boundary integral method
    Cunha, FR
    Loewenberg, M
    MECHANICS RESEARCH COMMUNICATIONS, 2003, 30 (06) : 639 - 649
  • [49] Indirect boundary integral equation method for poroelasticity
    Int J Numer Anal Methods Geomech, 9 (587):
  • [50] A boundary integral method for acoustic radiation and scattering
    Hwang, WS
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1997, 101 (06): : 3330 - 3335