Essentially optimal explicit Runge-Kutta methods with application to hyperbolic-parabolic equations

被引:26
|
作者
Torrilhon, Manuel [1 ]
Jeltsch, Rolf
机构
[1] Princeton Univ, Program Appl & Comp Math, Princeton, NJ 08544 USA
[2] ETH, CH-8092 Zurich, Switzerland
关键词
D O I
10.1007/s00211-006-0059-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Optimal explicit Runge-Kutta methods consider more stages in order to include a particular spectrum in their stability domain and thus reduce time-step restrictions. This idea, so far used mostly for real-line spectra, is generalized to more general spectra in the form of a thin region. In thin regions the eigenvalues may extend away from the real axis into the imaginary plane. We give a direct characterization of optimal stability polynomials containing a maximal thin region and calculate these polynomials for various cases. Semi-discretizations of hyperbolic-parabolic equations are a relevant application which exhibit a thin region spectrum. As a model, linear, scalar advection-diffusion is investigated. The second-order-stabilized explicit Runge-Kutta methods derived from the stability polynomials are applied to advection-diffusion and compressible, viscous fluid dynamics in numerical experiments. Due to the stabilization the time step can be controlled solely from the hyperbolic CFL condition even in the presence of viscous fluxes.
引用
收藏
页码:303 / 334
页数:32
相关论文
共 50 条
  • [21] A COMPARISON OF EXPLICIT RUNGE-KUTTA METHODS
    Walters, Stephen J.
    Turner, Ross J.
    Forbes, Lawrence K.
    ANZIAM JOURNAL, 2022, 64 (03): : 227 - 249
  • [22] FLUX-EXPLICIT IMEX RUNGE-KUTTA SCHEMES FOR HYPERBOLIC TO PARABOLIC RELAXATION PROBLEMS
    Boscarino, Sebastiano
    Russo, Giovanni
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) : 163 - 190
  • [23] Application of Geometric Explicit Runge-Kutta Methods to Pharmacokinetic Models
    Akanbi, Moses A.
    Patidar, Kailash C.
    MODELING AND SIMULATION IN ENGINEERING, ECONOMICS, AND MANAGEMENT, MS 2012, 2012, 115 : 259 - 269
  • [24] Many-Stage Optimal Stabilized Runge-Kutta Methods for Hyperbolic Partial Differential Equations
    Doehring, Daniel
    Gassner, Gregor J.
    Torrilhon, Manuel
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (01)
  • [25] STABILITY OF IMPLICIT RUNGE-KUTTA METHODS IN PARABOLIC DIFFERENTIAL-EQUATIONS
    SCHMITT, BA
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1980, 60 (7BIS): : T317 - T319
  • [26] Reprint of "Explicit exponential Runge-Kutta methods of high order for parabolic problems"
    Vu Thai Luan
    Ostermann, Alexander
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 262 : 361 - 372
  • [27] Variational formulations for explicit Runge-Kutta Methods
    Munoz-Matute, Judit
    Pardo, David
    Calo, Victor M.
    Alberdi, Elisabete
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2019, 165 : 77 - 93
  • [28] Composite Group of Explicit Runge-Kutta Methods
    Abd Hamid, Fatin Nadiah
    Rabiei, Faranak
    Ismail, Fudziah
    INNOVATIONS THROUGH MATHEMATICAL AND STATISTICAL RESEARCH: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND STATISTICS (ICMSS2016), 2016, 1739
  • [29] On the preservation of invariants by explicit Runge-Kutta methods
    Calvo, M.
    Hernandez-Abreu, D.
    Montijano, J. I.
    Randez, L.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (03): : 868 - 885
  • [30] Extrapolated stabilized explicit Runge-Kutta methods
    Martin-Vaquero, J.
    Kleefeld, B.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 326 : 141 - 155