Limited Automata and Context-Free Languages

被引:26
|
作者
Pighizzini, Giovanni [1 ]
Pisoni, Andrea [1 ]
机构
[1] Univ Milan, Dipartimento Informat, I-20135 Milan, Italy
关键词
finite automata; formal languages; Turing machines; deterministic context-free languages; descriptional complexity; DESCRIPTIONAL COMPLEXITY;
D O I
10.3233/FI-2015-1148
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Limited automata are one-tape Turing machines which are allowed to rewrite each tape cell only in the first d visits, for a given constant d. For each d >= 2, these devices characterize the class of context-free languages. We investigate the equivalence between 2-limited automata and pushdown automata, comparing the relative sizes of their descriptions. We prove exponential upper and lower bounds for the sizes of pushdown automata simulating 2-limited automata. In the case of the conversion of deterministic 2-limited automata into deterministic pushdown automata the upper bound is double exponential and we conjecture that it cannot be reduced. On the other hand, from pushdown automata we can obtain equivalent 2-limited automata of polynomial size, also preserving determinism. From our results, it follows that the class of languages accepted by deterministic 2-limited automata coincides with the class of deterministic context-free languages.
引用
收藏
页码:157 / 176
页数:20
相关论文
共 50 条
  • [21] ON THE RECOGNITION OF CONTEXT-FREE LANGUAGES
    RYTTER, W
    LECTURE NOTES IN COMPUTER SCIENCE, 1985, 208 : 318 - 325
  • [22] ON REGULARITY OF CONTEXT-FREE LANGUAGES
    EHRENFEUCHT, A
    HAUSSLER, D
    ROZENBERG, G
    THEORETICAL COMPUTER SCIENCE, 1983, 27 (03) : 311 - 332
  • [23] CONTEXT-FREE FUZZY LANGUAGES
    SANTOS, ES
    INFORMATION AND CONTROL, 1974, 26 (01): : 1 - 11
  • [24] CATERPILLARS AND CONTEXT-FREE LANGUAGES
    CHYTIL, MP
    MONIEN, B
    LECTURE NOTES IN COMPUTER SCIENCE, 1990, 415 : 70 - 81
  • [25] Logics for context-free languages
    Lautemann, C
    Schwentick, T
    Therien, D
    COMPUTER SCIENCE LOGIC, 1995, 933 : 205 - 216
  • [26] On polyslender context-free languages
    Dömösi, P
    Martin-Vide, C
    Mateescu, A
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2005, 66 (1-2): : 1 - 15
  • [27] On strongly context-free languages
    Ilie, L
    Paun, G
    Rozenberg, G
    Salomaa, A
    DISCRETE APPLIED MATHEMATICS, 2000, 103 (1-3) : 153 - 165
  • [28] Characterization of context-free languages
    Badano, M.
    Vaggione, D.
    THEORETICAL COMPUTER SCIENCE, 2017, 676 : 92 - 96
  • [29] CHARACTERIZATION OF CONTEXT-FREE LANGUAGES
    DEGALLEGO, MS
    ANNALES DE LA SOCIETE SCIENTIFIQUE DE BRUXELLES SERIES 1-SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1979, 93 (03): : 155 - 158
  • [30] BICENTERS OF CONTEXT-FREE LANGUAGES
    AUTEBERT, JM
    BEAUQUIER, J
    BOASSON, L
    GIRE, F
    ACTA INFORMATICA, 1984, 21 (02) : 209 - 227