The tangent bundle exponential map and locally autoparallel coordinates for general connections on the tangent bundle with application to Finsler geometry

被引:5
|
作者
Pfeifer, Christian [1 ]
机构
[1] Leibniz Univ Hannover, Inst Theoret Phys, Appelstr 2, D-30167 Hannover, Germany
关键词
Finsler geometry; Finsler spacetimes; exponential map; normal coordinates; SPACES;
D O I
10.1142/S0219887816500237
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct a tangent bundle exponential map and locally autoparallel coordinates for geometries based on a general connection on the tangent bundle of a manifold. As concrete application we use these new coordinates for Finslerian geometries and obtain Finslerian geodesic coordinates. They generalize normal coordinates known from metric geometry to Finsler geometric manifolds and it turns out that they are identical to the Douglas-Thomas normal coordinates introduced earlier. We expand the Finsler Lagrangian of a Finsler spacetime in these new coordinates and find that it is constant to quadratic order. The quadratic order term comes with the nonlinear curvature of the manifold. From physics these coordinates may be interpreted as the realisation of an Einstein elevator in Finslerian spacetime geometries.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] A class of metrics and foliations on tangent bundle of Finsler manifolds
    Xia, Hongchuan
    Zhong, Chunping
    FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (02) : 417 - 439
  • [32] Tangent bundle geometry from dynamics: Application to the Kepler problem
    Carinena, J. F.
    Clemente-Gallardo, J.
    Jover-Galtier, J. A.
    Marmo, G.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2017, 14 (03)
  • [33] Connections on the generalized tangent bundle of a Riemannian manifold
    Blaga, Adara M.
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2011, 16 (01): : 27 - 36
  • [34] TANGENT BUNDLE CONNECTIONS AND THE GEODESIC-FLOW
    CHICONE, CC
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1981, 11 (02) : 305 - 317
  • [35] On the Lagrangian Geometry of the Tangent Bundle of a Toric Variety
    Tyurin, N. A.
    MATHEMATICAL NOTES, 2022, 111 (3-4) : 654 - 655
  • [36] On the Lagrangian Geometry of the Tangent Bundle of a Toric Variety
    N. A. Tyurin
    Mathematical Notes, 2022, 111 : 654 - 655
  • [37] ON THE GEOMETRY OF THE TANGENT BUNDLE WITH VERTICAL RESCALED METRIC
    Dida, H. M.
    Hathout, F.
    Azzouz, A.
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (01): : 222 - 235
  • [38] SOLUTION TO TORSION RELATIONS IN FINSLER-SPACETIME TANGENT BUNDLE
    BRANDT, HE
    FOUNDATIONS OF PHYSICS LETTERS, 1994, 7 (03) : 297 - 301
  • [39] A framed f-structure on the tangent bundle of a Finsler manifold
    Peyghan, Esmaeil
    Zhong, Chunping
    ANNALES POLONICI MATHEMATICI, 2012, 104 (01) : 23 - 41
  • [40] General Natural Metallic Structure on Tangent Bundle
    Azami, Shahroud
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A1): : 81 - 88