Inhibitory effect of PDE2 on inflammation and apoptosis in cerebral ischemia-reperfusion injury

被引:4
|
作者
Wan, Ding [1 ,2 ]
Wang, Xiaoyan [3 ]
Feng, Jin [1 ]
Wang, Peng [2 ]
Xu, Hua [4 ,5 ]
机构
[1] Ningxia Med Univ, Dept Neurosurg, Gen Hosp, Yinchuan 750004, Ningxia, Peoples R China
[2] Ningxia Med Univ, Ningxia Key Lab Cerebro Cranial Dis, Yinchuan 750004, Ningxia, Peoples R China
[3] Zhongning Cty Peoples Hosp, Dept Hosp Infect Management, Zhongwei 751200, Ningxia, Peoples R China
[4] Wuxi Higher Hlth Vocat Technol Sch, Dept Nursing, Wuxi 214028, Jiangsu, Peoples R China
[5] Wuxi Higher Hlth Vocat Technol Sch, Dept Nursing, 305 Xinguang Rd, Wuxi 214028, Jiangsu, Peoples R China
关键词
phosphodiesterase; 2; cerebral ischemia-reperfusion injury; inflammation; apoptosis; protein kinase A; OXIDATIVE STRESS; REVERSES; SILDENAFIL; MECHANISMS; EXPRESSION; DEFICITS;
D O I
10.3892/ijmm.2022.5165
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Cerebral ischemia-reperfusion injury (CIRI) is associated with high morbidity and mortality rates and its pathogenesis is complex. Phosphodiesterase 2 (PDE2) has been proposed to exert a protective effect, although, to the to the best of the authors' knowledge, its role in CIRI has yet to be reported. Therefore, the aim of the present study was to investigate the role of PDE2 in CIRI. To meet this aim, a middle cerebral artery occlusion (MCAO) model was established in mice. After having successfully modeled the MCAO, the mice were treated with the PDE2 inhibitor Bay-607550 and the expression level of PDE2 was detected using reverse transcription-quantitative (RT-q) PCR and western blot analysis. Histopathology of the brain was assessed using hematoxylin and eosin staining. The proportions of dry and wet tissue in brain were recorded and the cerebral ischemia area was assessed using 2,3,5-triphenyltetrazolium chloride staining. RT-qPCR was also used to measure the expression levels of inflammatory factors. The expression of ionized calcium binding adaptor molecule 1, a marker of microglia activation, was detected by immunofluorescence assay, western blotting and RT-qPCR. Western blotting was used to detect the expression levels of P65 and NF-kappa B inhibitor alpha and their phosphorylated forms. The levels of apoptosis were subsequently determined using TUNEL and western blot analysis. SH-SY5Y cells were induced by oxygen-glucose deprivation (OGD) and the expression levels of PDE2 were subsequently detected. Cell transfection was used to interfere with the expression of PDE2 and the regulation of PDE2 upon OGD/reoxygenation (OGD/R)-induced inflammation and apoptosis was further detected in cell experiments. Finally, western blot analysis was used to detect the expression of protein kinase A (PKA) downstream of PDE2 in vivo and in vitro. The expression levels of PDE2 were found to be significantly increased in the MCAO model mice. Following treatment with Bay-607550, the condition of the brain nerve cells was improved with respect to the levels of cerebral ischemia, inflammation and apoptosis. The results of the in vitro cell experiments were found to be consistent with those of the in vivo animal experiments. Furthermore, the western blotting experiments suggested that the above-mentioned regulation of PDE2 may be achieved via regulating PKA. Taken together, the present study has shown that inhibition of PDE2 led to a reduction in inflammation and apoptosis during CIRI through regulating PKA.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] The mechanism of neuroprotective effect of tacrolimus on rat cerebral ischemia-reperfusion injury
    Tang, Qiang
    Liang, Ming-lu
    Zhang, Rui
    Ming, Zhang-yin
    Xiang, Ji-zhou
    ACTA PHARMACOLOGICA SINICA, 2013, 34 : 113 - 113
  • [42] Therapeutic Effect Analysis of Sinomenine on Rat Cerebral Ischemia-Reperfusion Injury
    Yang, Shen
    Ning, Fangbo
    Li, Juan
    Guo, Dongmei
    Zhang, Li
    Cui, Ruiting
    Liu, Yunlin
    JOURNAL OF STROKE & CEREBROVASCULAR DISEASES, 2016, 25 (05): : 1263 - 1269
  • [43] Schaftoside improves cerebral ischemia-reperfusion injury by enhancing autophagy and reducing apoptosis and inflammation through the AMPK/mTOR pathway
    Zhang, Lin
    Wu, Minghua
    Chen, Zhaoyao
    ADVANCES IN CLINICAL AND EXPERIMENTAL MEDICINE, 2022, 31 (12): : 1343 - 1354
  • [44] Effect of Cycloxygenase 2 in cardiac ischemia-reperfusion injury
    Alvarez, M. S.
    Cucarella, C.
    Rossignol, R.
    Sanz, P. M.
    Casado, M.
    FEBS JOURNAL, 2011, 278 : 282 - 282
  • [45] Neuroprotective effect of cerebroprotein hydrolysate on cerebral ischemia-reperfusion injury mice
    SHI Cai-yun
    AN Zi-xuan
    LI Wei
    中国药理学与毒理学杂志, 2021, 35 (09) : 674 - 675
  • [46] Effect of Acupuncture on Oxidative Stress Induced by Cerebral Ischemia-Reperfusion Injury
    Chen, Chao-Hsien
    Hsieh, Ching-Liang
    ANTIOXIDANTS, 2020, 9 (03)
  • [47] Protective effect of polysaccharide peptide on cerebral ischemia-reperfusion injury in rats
    Xing, Pengcheng
    Ma, Ke
    Wu, Jun
    Long, Wei
    Wang, Donglian
    MOLECULAR MEDICINE REPORTS, 2018, 18 (06) : 5371 - 5378
  • [48] Sappanone A Protects Against Inflammation, Oxidative Stress and Apoptosis in Cerebral Ischemia-Reperfusion Injury by Alleviating Endoplasmic Reticulum Stress
    Meihua Wang
    Zhilin Chen
    Lei Yang
    Lei Ding
    Inflammation, 2021, 44 : 934 - 945
  • [49] Sappanone A Protects Against Inflammation, Oxidative Stress and Apoptosis in Cerebral Ischemia-Reperfusion Injury by Alleviating Endoplasmic Reticulum Stress
    Wang, Meihua
    Chen, Zhilin
    Yang, Lei
    Ding, Lei
    INFLAMMATION, 2021, 44 (03) : 934 - 945
  • [50] Inhibition of SK2 and ER stress ameliorated inflammation and apoptosis in liver ischemia-reperfusion injury
    Jiang, Yiya
    Huang, Zhaoshuai
    Li, Xianpeng
    Zhou, Liuzhi
    Zhu, Xiuping
    Chen, Feng
    Shi, Yanjun
    LIVER TRANSPLANTATION, 2023, 29 (10) : 1050 - 1062