Hybrid SMOTE-Ensemble Approach for Software Defect Prediction

被引:24
|
作者
Alsawalqah, Hamad [1 ]
Faris, Hossam [1 ]
Aljarah, Ibrahim [1 ]
Alnemer, Loai [1 ]
Alhindawi, Nouh [2 ]
机构
[1] Univ Jordan, King Abdullah Sch Informat Technol 2, Amman, Jordan
[2] Jadara Univ, Fac Sci & Informat Technol, Dept Software Engn, Irbid, Jordan
关键词
Software defect prediction; SMOTE; Ensemble approaches; Data mining; Software engineering; FAULT PREDICTION; QUALITY;
D O I
10.1007/978-3-319-57141-6_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Software defect prediction is the process of identifying new defects/bugs in software modules. Software defect presents an error in a computer program, which is caused by incorrect code or incorrect programming logic. As a result, undiscovered defects lead to a poor quality software products. In recent years, software defect prediction has received a considerable amount of attention from researchers. Most of the previous defect detection algorithms are marred by low defect detection ratios. Furthermore, software defect prediction is very challenging problem due to the high imbalanced distribution, where the bug-free codes are much higher than defective ones. In this paper, the software defect prediction problem is formulated as a classification task, and then it examines the impact of several ensembles methods on the classification effectiveness. In addition, the best ensemble classifier will be selected to be trained again on an over-sampled datasets using the Synthetic Minority Over-sampling Technique (SMOTE) algorithm to tackle imbalanced distribution problem. The proposed hybrid method is evaluated using four software defects datasets. Experimental results demonstrate that the proposed method can effectively enhance the defect prediction accuracy.
引用
收藏
页码:355 / 366
页数:12
相关论文
共 50 条
  • [21] Tackling Imbalanced Class on Cross-Project Defect Prediction Using Ensemble SMOTE
    Saifudin, A.
    Hendric, S. W. H. L.
    Soewito, B.
    Gaol, F. L.
    Abdurachman, E.
    Heryadi, Y.
    2ND INTERNATIONAL CONFERENCE ON INFORMATICS, ENGINEERING, SCIENCE, AND TECHNOLOGY (INCITEST 2019), 2019, 662
  • [22] Multiple kernel ensemble learning for software defect prediction
    Tiejian Wang
    Zhiwu Zhang
    Xiaoyuan Jing
    Liqiang Zhang
    Automated Software Engineering, 2016, 23 : 569 - 590
  • [23] Multiple kernel ensemble learning for software defect prediction
    Wang, Tiejian
    Zhang, Zhiwu
    Jing, Xiaoyuan
    Zhang, Liqiang
    AUTOMATED SOFTWARE ENGINEERING, 2016, 23 (04) : 569 - 590
  • [24] Heterogeneous stacked ensemble classifier for software defect prediction
    Goyal, Somya
    Bhatia, Pradeep Kumar
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (26) : 37033 - 37055
  • [25] Heterogeneous stacked ensemble classifier for software defect prediction
    Somya Goyal
    Pradeep Kumar Bhatia
    Multimedia Tools and Applications, 2022, 81 : 37033 - 37055
  • [26] Deep neural network based hybrid approach for software defect prediction using software metrics
    Manjula, C.
    Florence, Lilly
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 4): : S9847 - S9863
  • [27] Deep neural network based hybrid approach for software defect prediction using software metrics
    C. Manjula
    Lilly Florence
    Cluster Computing, 2019, 22 : 9847 - 9863
  • [28] Integrated Approach to Software Defect Prediction
    Felix, Ebubeogu Amarachukwu
    Lee, Sai Peck
    IEEE ACCESS, 2017, 5 : 21524 - 21547
  • [29] A Hybrid Approach to Coping with High Dimensionality and Class Imbalance for Software Defect Prediction
    Gao, Kehan
    Khoshgoftaar, Taghi
    Napolitano, Amri
    2012 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2012), VOL 2, 2012, : 281 - 288
  • [30] An improved approach to software defect prediction using a hybrid machine learning model
    Miholca, Diana-Lucia
    2018 20TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2018), 2019, : 443 - 448