Finite groups with supersoluble subgroups of given orders

被引:1
|
作者
Monakhov, V. S. [1 ]
Tyutyanov, V. N. [2 ]
机构
[1] Francisk Skorina Gomel State Univ, Gomel 246019, BELARUS
[2] Int Univ MITSO, Gomel Branch, Gomel 246029, BELARUS
来源
关键词
finite group; soluble group; maximal subgroup; nilpotent subgroup; supersoluble subgroup;
D O I
10.21538/0134-4889-2019-25-4-155-163
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a finite group G with the following property: for any of its maximal subgroups H, there exists a subgroup H-1 such that vertical bar H-1 vertical bar = vertical bar H vertical bar and H-1 is an element of F, where F is the formation of all nilpotent groups or all supersoluble groups. We prove that, if F = N is the formation of all nilpotent groups and G is nonnilpotent, then vertical bar pi(G)vertical bar = 2 and G has a normal Sylow subgroup. For the formation F = U of all supersoluble groups and a soluble group G with the above property, we prove that G is supersoluble, or 2 <= vertical bar pi(G)vertical bar <= 3; if vertical bar pi(G)vertical bar = 3, then G has a Sylow tower of supersoluble type; if vertical bar pi(G)vertical bar = 2, then either G has a normal Sylow subgroup or, for the largest p is an element of pi(G), some maximal subgroup of a Sylow p-subgroup is normal in G. If G is nonsoluble and, for each maximal subgroup of G, there exists a supersoluble subgroup of the same order, then every nonabelian composition factor of G is isomorphic to PSL2(p) for some prime p; we list all such values of p.
引用
收藏
页码:155 / 163
页数:9
相关论文
共 50 条
  • [22] Finite groups with complemented subgroups of prime orders
    Monakhov, Victor S.
    Kniahina, Viktoryia N.
    JOURNAL OF GROUP THEORY, 2015, 18 (06) : 905 - 912
  • [23] Finite groups determined by an inequality of the orders of their subgroups
    De Medts, Tom
    Tarnauceanu, Marius
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2008, 15 (04) : 699 - 704
  • [24] On almost normal subgroups of supersoluble groups
    Musella, C
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1999, 2B (03): : 715 - 722
  • [25] Finite Groups with Given Weakly σ-Permutable Subgroups
    Cao, C.
    Wu, Z.
    Guo, W.
    SIBERIAN MATHEMATICAL JOURNAL, 2018, 59 (01) : 157 - 165
  • [26] Finite groups with given weakly τσ-quasinormal subgroups
    Hussain, Muhammad Tanveer
    Cao, Chenehen
    Zhang, Li
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (05): : 1706 - 1717
  • [27] Periodic groups with given properties of finite subgroups
    D. V. Lytkina
    Doklady Mathematics, 2012, 85 : 55 - 56
  • [28] FINITE GROUPS WITH GIVEN SYSTEMS OF PROPERMUTABLE SUBGROUPS
    Trofimuk, A. A.
    EURASIAN MATHEMATICAL JOURNAL, 2024, 15 (01): : 91 - 97
  • [29] MAXIMAL SUPERSOLUBLE SUBGROUPS OF SYMMETRICAL GROUPS
    BIANCHI, M
    MAURI, AGB
    HAUCK, P
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1991, 159 : 371 - 404
  • [30] Finite Groups With Given Normalizers of Sylow Subgroups
    郭文斌
    Chinese Science Bulletin, 1994, (23) : 1952 - 1955