Wound-State Monitoring for Burn Patients Using E-Nose/SPME System

被引:49
|
作者
Byun, Hyung-Gi [1 ]
Persaud, Krishna C. [2 ]
Pisanelli, Anna Maria [2 ]
机构
[1] Kangwon Natl Univ, Sch Elect Informat & Commun Engn, Samcheok, South Korea
[2] Univ Manchester, Sch Chem Engn & Analyt Sci, Manchester, Lancs, England
关键词
ELECTRONIC NOSE; STAPHYLOCOCCUS-AUREUS; IDENTIFICATION; INFECTIONS;
D O I
10.4218/etrij.10.0109.0300
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Array-based gas sensors now offer the potential of a robust analytical approach to odor measurement for medical use. We are developing a fast reliable method for detection of microbial infection by monitoring the headspace from the infected wound. In this paper, we present initial results obtained from wound-state monitoring for burn patients using an electronic nose incorporating an automated solid-phase microextraction (SPME) desorption system to enable the system to be used for clinical validation. SPME preconcentration is used for sampling of the headspace air and the response of the sensor module to variable concentrations of volatiles emitted from SPME fiber is evaluated. Gas chromatography-mass spectrometry studies prove that living bacteria, the typical infectious agents in clinical practice, can be distinguished from each other by means of a limited set of key volatile products. Principal component analysis results give the first indication that infected patients may be distinguished from uninfected patients. Microbial laboratory analysis using clinical samples verifies the performance of the system.
引用
收藏
页码:440 / 446
页数:7
相关论文
共 50 条
  • [41] Classification of Different Breath Samples Utilizing E-Nose System
    Ozsandikcioglu, Umit
    Yapici, Sule
    Atasoy, Ayten
    2018 41ST INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2018, : 602 - 606
  • [42] Analysis and Feasibility Study of Plant Disease using E-Nose
    Chang, K. P. Prak
    Zakaria, A.
    Nasir, A. S. Abdul
    Yusuf, N.
    Thriumani, R.
    Shakaff, A. Y. M.
    Adom, A. H.
    2014 IEEE INTERNATIONAL CONFERENCE ON CONTROL SYSTEM COMPUTING AND ENGINEERING, 2014, : 58 - 63
  • [43] DIFFERENTIATION OF MECHANICAL DAMAGES OF RICE PLANTS USING E-NOSE
    Zhou, Bo
    Wang, Jun
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2012, 18 (05): : 443 - 451
  • [44] Anesthetic level prediction using a QCM based E-Nose
    Saraoglu, H. M.
    Ozmen, A.
    Ebeoglu, M. A.
    JOURNAL OF MEDICAL SYSTEMS, 2008, 32 (03) : 251 - 257
  • [45] SAW E-nose using single sensor with temperature modulation
    Singh, Harpreet
    BhaskerRaj, V.
    Kumar, Jitender
    Mittal, Upendra
    Mishra, Meena
    Durani, Fahim
    Nimal, A. T.
    Sharma, M. U.
    2014 9TH INTERNATIONAL CONFERENCE ON INDUSTRIAL AND INFORMATION SYSTEMS (ICIIS), 2014, : 450 - +
  • [46] Assessment of batch bioreactor odour nuisance using an e-nose
    Guz, Lukasz
    Lagod, Grzegorz
    Jaromin-Glen, Katarzyna
    Guz, Ewa
    Sobczuk, Henryk
    DESALINATION AND WATER TREATMENT, 2016, 57 (03) : 1327 - 1335
  • [47] Anesthetic Level Prediction Using a QCM Based E-Nose
    H. M. Saraoğlu
    A. Özmen
    M. A. Ebeoğlu
    Journal of Medical Systems, 2008, 32 : 251 - 257
  • [48] Odor Detection Using an E-Nose With a Reduced Sensor Array
    Borowik, Piotr
    Adamowicz, Leszek
    Tarakowski, Rafal
    Siwek, Krzysztof
    Grzywacz, Tomasz
    SENSORS, 2020, 20 (12) : 1 - 20
  • [49] Identification of Mint Scents Using a QCM Based E-Nose
    Okur, Salih
    Sarheed, Mohammed
    Huber, Robert
    Zhang, Zejun
    Heinke, Lars
    Kanbar, Adnan
    Woell, Christof
    Nick, Peter
    Lemmer, Uli
    CHEMOSENSORS, 2021, 9 (02) : 1 - 14
  • [50] Detecting moldy Bread using an E-Nose and the KNN classifier
    Estakhroueiyeh, Hossein Rezaei
    Rashedi, Esmat
    2015 5TH INTERNATIONAL CONFERENCE ON COMPUTER AND KNOWLEDGE ENGINEERING (ICCKE), 2015, : 251 - 255