ON A NONLINEAR ABSTRACT VOLTERRA EQUATION

被引:0
|
作者
Emmrich, Etienne [1 ]
Vallet, Guy [2 ]
机构
[1] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
[2] CNRS, UMR 5142, Lab Math & Applicat Pau, IPRA BP 1155, F-64013 Pau, France
关键词
Nonlinear Volterra equation; time discretization; existence;
D O I
10.1216/JIE-2016-28-1-75
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Existence of solutions is shown for equations of the type Av + B(KGv, v) = f, where A, B and G are possibly nonlinear operators acting on a Banach space V, and K is a Volterra operator of convolution type. The proof relies on the convergence of a suitable time discretization scheme.
引用
收藏
页码:75 / 89
页数:15
相关论文
共 50 条
  • [41] On solution of nonlinear Abel-Volterra integral equation
    Kilbas, AA
    Saigo, M
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 229 (01) : 41 - 60
  • [42] APPROXIMATE SOLUTIONS OF NONLINEAR VOLTERRA INTEGRAL EQUATION SYSTEMS
    Yalcinbas, Salih
    Erdem, Kubra
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (32): : 6235 - 6258
  • [43] Solution of nonlinear Abel-Volterra integral equation
    Kilbas, AA
    DOKLADY AKADEMII NAUK BELARUSI, 1996, 40 (01): : 13 - 17
  • [44] The asymptotic behavior of solutions of a certain nonlinear Volterra equation
    Z. B. Tsalyuk
    M. V. Tsalyuk
    Russian Mathematics, 2012, 56 (7) : 30 - 38
  • [45] The Asymptotic Behavior of Solutions of a Certain Nonlinear Volterra Equation
    Tsalyuk, Z. B.
    Tsalyuk, M. V.
    RUSSIAN MATHEMATICS, 2012, 56 (07) : 30 - 38
  • [46] NONLINEAR VOLTERRA INTEGRAL-EQUATION WITH SINGULAR KERNEL
    KANAZAWA, T
    PROCEEDINGS OF THE JAPAN ACADEMY, 1971, 47 : 921 - 924
  • [47] Numerical Solutions of a Class of Nonlinear Volterra Integral Equation
    Khumalo, Melusi
    Mamba, Hlukaphi
    WORLD CONGRESS ON ENGINEERING, WCE 2015, VOL I, 2015, : 128 - 131
  • [48] Existence of Nontrivial Solutions of A Nonlinear Volterra Integral Equation
    谢鸿政
    杨华球
    丁树森
    Journal of Harbin Institute of Technology, 1995, (02) : 9 - 14
  • [49] ON A NONLINEAR VOLTERRA INTEGRODIFFERENTIAL EQUATION OF HIGHER-ORDER
    PACHPATTE, BG
    UTILITAS MATHEMATICA, 1985, 27 (MAY) : 97 - 109
  • [50] The use of Volterra series in the analysis of the nonlinear Schrodinger equation
    Guo, L. Z.
    Guo, Y. Z.
    Billings, S. A.
    Coca, D.
    Lang, Z. Q.
    NONLINEAR DYNAMICS, 2013, 73 (03) : 1587 - 1599