Classification of Pachychoroid on Optical Coherence Tomographic En Face Images Using Deep Convolutional Neural Networks

被引:7
|
作者
Lee, Kook [1 ]
Ra, Ho [2 ]
Lee, Jun Hyuk [2 ]
Baek, Jiwon [2 ]
Lee, Won Ki [3 ]
机构
[1] Catholic Univ Korea, Coll Med, Dept Ophthalmol, Seoul St Marys Hosp, Seoul, South Korea
[2] Catholic Univ Korea, Coll Med, Dept Ophthalmol, Bucheon St Marys Hosp, 327 Sosa Ro, Bucheon 14647, Gyeonggi Do, South Korea
[3] Nune Eye Ctr, Seoul, South Korea
来源
关键词
choroid; deep learning; haller's layer; OCT; pachychoroid; CENTRAL SEROUS CHORIORETINOPATHY; POLYPOIDAL CHOROIDAL VASCULOPATHY; DIABETIC-RETINOPATHY; MACULAR DEGENERATION; EXTEND REGIMEN; AFLIBERCEPT; VASCULARITY; EYES;
D O I
10.1167/tvst.10.7.28
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose: To study the efficacy of deep convolutional neural networks (DCNNs) to differentiate pachychoroid from nonpachychoroid on en face optical coherence tomography (OCT) images at the large choroidal vessel. Methods: En face OCT images were collected from eyes with neovascular age-related macular degeneration, polypoidal choroidal vasculopathy, and central serous chorioretinopathy. All images were prelabeled pachychoroid or nonpachychoroid based on quantitative and qualitative criteria for choroidal morphology on multimodal imaging by two retina specialists. In total, 1188 nonpachychoroid and 884 pachychoroid images were used for training (80%) and validation (20%). Accuracy for identification of pachychoroid by DCNN models was analyzed. Trained models were tested on a test set containing 79 nonpachychoroid and 93 pachychoroid images. Results: The accuracy on the validation set was 94.1%, 93.2%, 94.7%, and 94.4% in DenseNet, GoogLeNet, ResNet50, and Inception-v3, respectively. On a test set, each model demonstrated accuracy of 80.2%, 83.1%, 89.5%, and 90.1% and an F1 score of 0.782, 0.824, 0.904, and 0.901, respectively. Conclusions: DCNN models could classify pachychoroid and nonpachychoroid with good performance on OCT en face images. Automated classification of pachychoroid will be useful for tailored treatment of individual patients with exudative maculopathy. Translational Relevance: En face OCT images can be used by DCNN for classification of pachychoroid.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Segmentation of Drosophila heart in optical coherence microscopy images using convolutional neural networks
    Duan, Lian
    Qin, Xi
    He, Yuanhao
    Sang, Xialin
    Pan, Jinda
    Xu, Tao
    Men, Jing
    Tanzi, Rudolph E.
    Li, Airong
    Ma, Yutao
    Zhou, Chao
    JOURNAL OF BIOPHOTONICS, 2018, 11 (12)
  • [22] Airport Detection on Optical Satellite Images Using Deep Convolutional Neural Networks
    Zhang, Peng
    Niu, Xin
    Dou, Yong
    Xia, Fei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (08) : 1183 - 1187
  • [23] AUTOMATIC ANATOMICAL CLASSIFICATION OF GASTROINTESTINAL ENDOSCOPIC IMAGES USING DEEP CONVOLUTIONAL NEURAL NETWORKS
    Takiyama, Hirotoshi
    Ozawa, Tsuyoshi
    Ishihara, Soichiro
    Fujishiro, Mitsuhiro
    Shichijo, Satoki
    Endo, Yuma
    Tada, Tomohiro
    GASTROINTESTINAL ENDOSCOPY, 2018, 87 (06) : AB239 - AB240
  • [24] Optimized Deep Convolutional Neural Networks for Identification of Macular Diseases from Optical Coherence Tomography Images
    Ji, Qingge
    Huang, Jie
    He, Wenjie
    Sun, Yankui
    ALGORITHMS, 2019, 12 (03)
  • [25] Fractal analysis of en face tomographic images obtained with full field optical coherence tomography
    Gao, Wanrong
    Zhu, Yue
    ANNALEN DER PHYSIK, 2017, 529 (03)
  • [26] Spectral-spatial classification of hyperspectral images using deep convolutional neural networks
    Yue, Jun
    Zhao, Wenzhi
    Mao, Shanjun
    Liu, Hui
    REMOTE SENSING LETTERS, 2015, 6 (06) : 468 - 477
  • [27] Speckle denoising in optical coherence tomography images using residual deep convolutional neural network
    Gour, Neha
    Khanna, Pritee
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (21-22) : 15679 - 15695
  • [28] Speckle denoising in optical coherence tomography images using residual deep convolutional neural network
    Neha Gour
    Pritee Khanna
    Multimedia Tools and Applications, 2020, 79 : 15679 - 15695
  • [29] Malware Classification using Deep Convolutional Neural Networks
    Kornish, David
    Geary, Justin
    Sansing, Victor
    Ezekiel, Soundararajan
    Pearlstein, Larry
    Njilla, Laurent
    2018 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2018,
  • [30] Flower classification using deep convolutional neural networks
    Hiary, Hazem
    Saadeh, Heba
    Saadeh, Maha
    Yaqub, Mohammad
    IET COMPUTER VISION, 2018, 12 (06) : 855 - 862