Dynamic of the smooth positons of the higher-order Chen-Lee-Liu equation

被引:26
|
作者
Hu, Aijuan [1 ]
Li, Maohua [1 ]
He, Jingsong [2 ]
机构
[1] Ningbo Univ, Sch Math & Stat, Ningbo 315211, Zhejiang, Peoples R China
[2] Shenzhen Univ, Inst Adv Study, Shenzhen 518060, Guangdong, Peoples R China
关键词
HOCLL equation; Positon solution; Degenerate Darboux transformation; Trajectory; Phase shift; NONLINEAR SCHRODINGER-EQUATION; ROGUE WAVE SOLUTIONS; KDV; TRANSMISSION; BREATHERS; SOLITONS; FORMULA;
D O I
10.1007/s11071-021-06547-4
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Based on the degenerate Darboux transformation, the n-positon solution of the higher-order Chen-Lee-Liu (HOCLL) equation are obtained by the special limit lambda(j) -> lambda(1) taking from the corresponding n-soliton solution, and using the higher-order Taylor expansion. Using the method of the modulus square decomposition, n-positon is decomposed into n single soliton solutions. The dynamic properties of smooth positon of the HOCLL equation are discussed in detail, and the corresponding trajectory, approximate trajectory and "phase shift" are obtained. In addition, the mixed solutions of soliton and positon are discussed, and the corresponding three-dimensional map are given.
引用
收藏
页码:4329 / 4338
页数:10
相关论文
共 50 条
  • [11] The Riemann–Hilbert approach for the Chen–Lee–Liu equation with higher-order poles
    Lin B.
    Zhang Y.
    Applied Mathematics Letters, 2024, 149
  • [12] The generalized Chen-Lee-Liu model with higher order nonlinearity: optical solitons
    Cesar A. Gomez
    Hadi Rezazadeh
    Mustafa Inc
    Lanre Akinyemi
    Fakhroddin Nazari
    Optical and Quantum Electronics, 2022, 54
  • [13] Higher-dimensional Chen-Lee-Liu equation and asymmetric peakon soliton
    Han, Qiao-Hong
    Jia, Man
    CHINESE PHYSICS B, 2024, 33 (04)
  • [14] The generalized Chen-Lee-Liu model with higher order nonlinearity: optical solitons
    Gomez, Cesar A.
    Rezazadeh, Hadi
    Inc, Mustafa
    Akinyemi, Lanre
    Nazari, Fakhroddin
    OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (08)
  • [15] Optical soliton perturbation with Chen-Lee-Liu equation
    Yildirim, Yakup
    Biswas, Anjan
    Asma, Mir
    Ekici, Mehmet
    Ntsime, Basetsana Pauline
    Zayed, E. M. E.
    Moshokoa, Seithuti P.
    Alzahrani, Abdullah Kamis
    Belic, Milivoj R.
    OPTIK, 2020, 220
  • [16] Explicit solutions to nonlinear Chen-Lee-Liu equation
    Akinyemi, Lanre
    Ullah, Najib
    Akbar, Yasir
    Hashemi, Mir Sajjad
    Akbulut, Arzu
    Rezazadeh, Hadi
    MODERN PHYSICS LETTERS B, 2021, 35 (25):
  • [17] New Exact Solutions for Chen-Lee-Liu Equation
    Mohamed, E.M.
    El-Kalla, I.L.
    Tarabia, A.M.K.
    Abdel Kader, A.H.
    Nonlinear Optics Quantum Optics, 2024, 59 (3-4): : 237 - 252
  • [18] New Exact Solutions for Chen-Lee-Liu Equation
    Mohamed, E. M.
    El-Kalla, I. L.
    Tarabia, A. M. K.
    Kader, A. H. Abdel
    NONLINEAR OPTICS QUANTUM OPTICS-CONCEPTS IN MODERN OPTICS, 2024, 59 (3-4): : 237 - 252
  • [19] Higher-order smooth positons and breather positons of Sine-Gordon equation
    Lin Jiang
    Biao Li
    Communications in Theoretical Physics, 2022, 74 (08) : 55 - 59
  • [20] Higher-order smooth positons and breather positons of Sine-Gordon equation
    Jiang, Lin
    Li, Biao
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2022, 74 (08)