Comparing artificial intelligence techniques for chlorophyll-a prediction in US lakes

被引:27
|
作者
Luo, Wenguang [1 ]
Zhu, Senlin [2 ]
Wu, Shiqiang [2 ]
Dai, Jiangyu [2 ]
机构
[1] Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Peoples R China
[2] Nanjing Hydraul Res Inst, State Key Lab Hydrol Water Resources & Hydraul, Nanjing 210029, Jiangsu, Peoples R China
基金
中国博士后科学基金; 国家重点研发计划;
关键词
Artificial intelligence; Chlorophyll-a; Natural lakes; Man-made lakes; MLPNN; ANFIS; NEURAL-NETWORK MODEL; REGRESSION-MODELS; FRESH-WATER; EUTROPHICATION; RESERVOIR; ANFIS; PERFORMANCE; VARIABLES; BLOOMS;
D O I
10.1007/s11356-019-06360-y
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Chlorophyll-a (CHLA) is a key indicator to represent eutrophication status in lakes. In this study, CHLA, total phosphorus (TP), total nitrogen (TN), turbidity (TB), and Secchi depth (SD) collected by the United States Environmental Protection Agency for the National Lakes Assessment in the continental USA were analyzed. Statistical analysis showed that water quality variables in natural lakes have strong patterns of autocorrelations than man-made lakes, indicating the perturbation of anthropogenic stresses on man-made lake ecosystems. Meanwhile, adaptive neuro-fuzzy inference systems (ANFIS) with fuzzy c-mean-clustering algorithm (ANFIS_FC), ANFIS with grid partition method (ANFIS_GP), and ANFIS with subtractive clustering method (ANFIS_SC) were implemented to model CHLA in lakes, and modeling results were compared with the multilayer perceptron neural network models (MLPNN). Results showed that ANFIS_FC models outperformed other models for natural lakes, while for man-made lakes, MLPNN models performed the best. ANFIS_GP models have the lowest accuracies in general. The results indicated that ANFIS models can be screening tools for an overall estimation of CHLA levels of lakes in large scales, especially for natural lakes.
引用
收藏
页码:30524 / 30532
页数:9
相关论文
共 50 条
  • [1] Comparing artificial intelligence techniques for chlorophyll-a prediction in US lakes
    Wenguang Luo
    Senlin Zhu
    Shiqiang Wu
    Jiangyu Dai
    Environmental Science and Pollution Research, 2019, 26 : 30524 - 30532
  • [2] Letter to the editor "comparing artificial intelligence techniques for chlorophyll-a prediction in US lakes"
    Basakin, Eyyup Ensar
    Ekmekcioglu, Omer
    Mohammadi, Babak
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2020, 27 (17) : 22131 - 22134
  • [3] Letter to the editor “comparing artificial intelligence techniques for chlorophyll-a prediction in US lakes”
    Eyyup Ensar Başakın
    Ömer Ekmekcioğlu
    Babak Mohammadi
    Environmental Science and Pollution Research, 2020, 27 : 22131 - 22134
  • [4] Comparing techniques for TEmporal eXplainable Artificial Intelligence
    Canti, Edoardo
    Collini, Enrico
    Palesi, Luciano Alessandro Ipsaro
    Nesi, Paolo
    2024 IEEE 10TH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING SERVICE AND MACHINE LEARNING APPLICATIONS, BIGDATASERVICE 2024, 2024, : 87 - 91
  • [5] THE DEEP CHLOROPHYLL MAXIMUM - COMPARING VERTICAL PROFILES OF CHLOROPHYLL-A
    CULLEN, JJ
    CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES, 1982, 39 (05) : 791 - 803
  • [6] Exploring the potential value of satellite remote sensing to monitor chlorophyll-a for US lakes and reservoirs
    Michael Papenfus
    Blake Schaeffer
    Amina I. Pollard
    Keith Loftin
    Environmental Monitoring and Assessment, 2020, 192
  • [7] Exploring the potential value of satellite remote sensing to monitor chlorophyll-a for US lakes and reservoirs
    Papenfus, Michael
    Schaeffer, Blake
    Pollard, Amina, I
    Loftin, Keith
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2020, 192 (12)
  • [8] Defining Chlorophyll-a Reference Conditions in European Lakes
    Poikane, Sandra
    Alves, Maria Helena
    Argillier, Christine
    van den Berg, Marcel
    Buzzi, Fabio
    Hoehn, Eberhard
    de Hoyos, Caridad
    Karottki, Ivan
    Laplace-Treyture, Christophe
    Solheim, Anne Lyche
    Ortiz-Casas, Jose
    Ott, Ingmar
    Phillips, Geoff
    Pilke, Ansa
    Padua, Joao
    Remec-Rekar, Spela
    Riedmueller, Ursula
    Schaumburg, Jochen
    Luisa Serrano, Maria
    Soszka, Hanna
    Tierney, Deirdre
    Urbanic, Gorazd
    Wolfram, Georg
    ENVIRONMENTAL MANAGEMENT, 2010, 45 (06) : 1286 - 1298
  • [9] Estimation of chlorophyll-a in urban lakes using drones
    Nevarez, Myrna
    Sigala, Mario
    TECNOLOGIA Y CIENCIAS DEL AGUA, 2022, 13 (05) : 101 - 135
  • [10] Defining Chlorophyll-a Reference Conditions in European Lakes
    Sandra Poikāne
    Maria Helena Alves
    Christine Argillier
    Marcel van den Berg
    Fabio Buzzi
    Eberhard Hoehn
    Caridad de Hoyos
    Ivan Karottki
    Christophe Laplace-Treyture
    Anne Lyche Solheim
    José Ortiz-Casas
    Ingmar Ott
    Geoff Phillips
    Ansa Pilke
    João Pádua
    Spela Remec-Rekar
    Ursula Riedmüller
    Jochen Schaumburg
    Maria Luisa Serrano
    Hanna Soszka
    Deirdre Tierney
    Gorazd Urbanič
    Georg Wolfram
    Environmental Management, 2010, 45 : 1286 - 1298