Confinement effects of CdSe nanocrystals intercalated into mesoporous silica

被引:8
|
作者
Chen, Shu-Fang [1 ]
Liu, Chuan-Pu [1 ]
Eliseev, Andrei A. [2 ]
Petukhov, Dmitry I. [2 ]
Dhara, Sandip [3 ]
机构
[1] Natl Cheng Kung Univ, Dept Mat Sci & Engn, Tainan 70101, Taiwan
[2] Moscow MV Lomonosov State Univ, Dept Mat Sci, Moscow, Russia
[3] Indira Gandhi Ctr Atom Res, Surface & Nanosci Div, Mat Sci Grp, Kalpakkam 603102, Tamil Nadu, India
关键词
aggregation; cadmium compounds; crystal morphology; II-VI semiconductors; intercalation compounds; mesoporous materials; nanostructured materials; Raman spectra; silicon compounds; transmission electron microscopy; wide band gap semiconductors; STRUCTURAL-CHARACTERIZATION; SELENIDE NANOCRYSTALS; LATTICE CONTRACTION; RAMAN-SCATTERING; QUANTUM DOTS; NANOPARTICLES; SURFACE; POLYMER; GROWTH; MCM-41;
D O I
10.1063/1.3340903
中图分类号
O59 [应用物理学];
学科分类号
摘要
CdSe nanocrystals are intercalated into ordered hexagonal arrays of mesoporous silica. The nanocrystals are clearly confined in the channels and their size was estimated to be consistent with the pore size. Transmission electron microscopy suggests that CdSe nanocrystals have a spherical morphology and are stabilized from aggregation after intercalation. The shift of the longitudinal optical bands in the Raman spectra is caused by a combination of phonon confinement and strain effects from the compressed lattice of the intercalated CdSe nanocrystals and the experimental results agree well to the theoretical consideration.
引用
收藏
页数:3
相关论文
共 50 条
  • [31] The kinetics of the formation of CdSe nanocrystals in sodium-zinc-silica glass
    Golubkov, V. V.
    Onushchenko, P. A.
    Onushchenko, A. A.
    GLASS PHYSICS AND CHEMISTRY, 2014, 40 (03) : 291 - 297
  • [32] The kinetics of the formation of CdSe nanocrystals in sodium-zinc-silica glass
    V. V. Golubkov
    P. A. Onushchenko
    A. A. Onushchenko
    Glass Physics and Chemistry, 2014, 40 : 291 - 297
  • [33] Disentanglement of Surface and Confinement Effects for Diene Metathesis in Mesoporous Confinement
    Tischler, Ingo
    Schlaich, Alexander
    Holm, Christian
    ACS OMEGA, 2023, 9 (01): : 598 - 606
  • [34] Confinement behavior of ethane in mesoporous CPG-10 silica
    Patankar, Sumant
    Rother, Gernot
    Liu, Tingting
    Tomasko, David L.
    Cole, David R.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [35] Observation of Quantum Confinement Effect on ZnO Embedded Mesoporous Silica
    Sahu, D. R.
    Wu, Ching-Lin
    Huang, Jow-Lay
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2012, 12 (03) : 2543 - 2547
  • [36] Confinement of the Grubbs catalyst in alkene-functionalized mesoporous silica
    Staub, Helene
    Kleitz, Freddy
    Fontaine, Frederic-Georges
    MICROPOROUS AND MESOPOROUS MATERIALS, 2013, 175 : 170 - 177
  • [37] Fabrication of Mesoporous Metal Chalcogenide Nanoflake Silica Thin Films and Spongy Mesoporous CdS and CdSe
    Turker, Yurdanur
    Karakaya, Cuneyt
    Dag, Omer
    CHEMISTRY-A EUROPEAN JOURNAL, 2012, 18 (12) : 3695 - 3705
  • [38] Control over exciton confinement versus separation in composite films of polyfluorene and CdSe nanocrystals
    Tseng, YC
    Tzolov, M
    Sargent, EH
    Cyr, PW
    Hines, MA
    APPLIED PHYSICS LETTERS, 2002, 81 (18) : 3446 - 3448
  • [39] Homogeneously distributed CdS and CdSe nanoparticles in thin films of mesoporous silica
    Wark, M
    Wellmann, H
    Rathousky, J
    THIN SOLID FILMS, 2004, 458 (1-2) : 20 - 25
  • [40] Enhancement of electron-hole exchange interaction in CdSe nanocrystals: A quantum confinement effect
    Chamarro, M
    Gourdon, C
    Lavallard, P
    Lublinskaya, O
    Ekimov, AI
    PHYSICAL REVIEW B, 1996, 53 (03): : 1336 - 1342