Roulette inflation with Kahler moduli and their axions

被引:95
|
作者
Bond, J. Richard
Kofman, Lev
Prokushkin, Sergey
Vaudrevange, Pascal M.
机构
[1] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada
[2] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada
来源
PHYSICAL REVIEW D | 2007年 / 75卷 / 12期
关键词
D O I
10.1103/PhysRevD.75.123511
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study 2-field inflation models based on the "large-volume" flux compactification of type IIB string theory. The role of the inflaton is played by a Kahler modulus tau corresponding to a 4-cycle volume and its axionic partner theta. The freedom associated with the choice of Calabi-Yau manifold and the nonperturbative effects defining the potential V(tau,theta) and kinetic parameters of the moduli brings an unavoidable statistical element to theory prior probabilities within the low-energy landscape. The further randomness of (tau,theta) initial conditions allows for a large ensemble of trajectories. Features in the ensemble of histories include "roulette trajectories," with long-lasting inflations in the direction of the rolling axion, enhanced in the number of e-foldings over those restricted to lie in the tau-trough. Asymptotic flatness of the potential makes possible an eternal stochastic self-reproducing inflation. A wide variety of potentials and inflaton trajectories agree with the cosmic microwave background and large scale structure data. In particular, the observed scalar tilt with weak or no running can be achieved in spite of a nearly critical de Sitter deceleration parameter and consequently a low gravity wave power relative to the scalar curvature power.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Cosmology of axions and moduli: A dynamical systems approach
    Marsh, David J. E.
    Tarrant, Ewan R. M.
    Copeland, Edmund J.
    Ferreira, Pedro G.
    PHYSICAL REVIEW D, 2012, 86 (02)
  • [32] Kahler potentials for Planck inflation
    Roest, Diederik
    Scalisi, Marco
    Zavala, Ivonne
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2013, (11):
  • [33] Inflation and Kahler stabilization of the dilaton
    Skinner, D
    PHYSICAL REVIEW D, 2003, 67 (10)
  • [34] The Swampland Distance Conjecture for Kahler moduli
    Corvilain, Pierre
    Grimm, Thomas W.
    Valenzuela, Irene
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (08)
  • [35] MODULI AND KAHLER POTENTIAL IN FERMIONIC STRINGS
    LOPEZ, JL
    NANOPOULOS, DV
    YUAN, KJ
    PHYSICAL REVIEW D, 1994, 50 (06): : 4060 - 4074
  • [36] Kahler moduli stabilization and the propagation of decidability
    Halverson, James
    Plesser, Michael
    Ruehle, Fabian
    Tian, Jiahua
    PHYSICAL REVIEW D, 2020, 101 (04)
  • [37] Perturbative Corrections to Kahler Moduli Spaces
    Halverson, James
    Jockers, Hans
    Lapan, Joshua M.
    Morrison, David R.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 333 (03) : 1563 - 1584
  • [38] STRINGY KAHLER MODULI, MUTATION AND MONODROMY
    Donovan, Will
    Wemyss, Michael
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2025, 129 (01) : 115 - 164
  • [39] MODULI OF POLARIZED KAHLER-MANIFOLDS
    SCHUMACHER, G
    MATHEMATISCHE ANNALEN, 1984, 269 (01) : 137 - 144
  • [40] A systematic approach to Kahler moduli stabilisation
    AbdusSalam, S.
    Abel, S.
    Cicoli, M.
    Quevedo, F.
    Shukla, P.
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (08)