On a constant arising in Manin's conjecture for Del Pezzo surfaces

被引:0
|
作者
Derenthal, Ulrich [1 ]
机构
[1] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
关键词
Del Pezzo surface; effective cone; Manin's conjecture;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For split smooth Del Pezzo surfaces, we analyse the structure of the effective cone and prove a recursive formula for the value of alpha, appearing in the leading constant as predicted by Peyre of Manin's conjecture on the number of rational points of bounded height on the surface. Furthermore, we calculate a for all singular Del Pezzo surfaces of degree >= 3.
引用
收藏
页码:481 / 489
页数:9
相关论文
共 50 条
  • [31] Del Pezzo Surfaces with Many Symmetries
    Ivan Cheltsov
    Andrew Wilson
    Journal of Geometric Analysis, 2013, 23 : 1257 - 1289
  • [32] Del Pezzo surfaces with nonrational singularities
    I. A. Chel’tsov
    Mathematical Notes, 1997, 62 : 377 - 389
  • [33] Stable Polarized del Pezzo Surfaces
    Cheltsov, Ivan
    Martinez-Garcia, Jesus
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (18) : 5477 - 5505
  • [34] ALGEBRAIC POINTS ON DEL PEZZO SURFACES
    CORAY, D
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (24): : 1531 - 1534
  • [35] Weak del Pezzo surfaces with irregularity
    Schroeer, Stefan
    TOHOKU MATHEMATICAL JOURNAL, 2007, 59 (02) : 293 - 322
  • [36] Admissible subcategories of del Pezzo surfaces
    Pirozhkov, Dmitrii
    ADVANCES IN MATHEMATICS, 2023, 424
  • [37] Poisson cohomology of Del Pezzo surfaces
    Hong, Wei
    Xu, Ping
    JOURNAL OF ALGEBRA, 2011, 336 (01) : 378 - 390
  • [38] THE BRAUER GROUP OF DEL PEZZO SURFACES
    Carter, Andrea C.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2011, 7 (02) : 261 - 287
  • [39] DEL PEZZO SURFACES OF SIXTH DEGREE
    COLLIOTT.JL
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 275 (02): : 109 - &
  • [40] UNSTABLE POLARIZED DEL PEZZO SURFACES
    Cheltsov, Ivan
    Martinez-Garcia, Jesus
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (10) : 7255 - 7296