Deep learning based segmentation of brain tissue from diffusion MRI

被引:42
|
作者
Zhang, Fan [1 ]
Breger, Anna [2 ]
Cho, Kang Ik Kevin [3 ]
Ning, Lipeng [3 ]
Westin, Carl-Fredrik [1 ]
O'Donnell, Lauren J. [1 ]
Pasternak, Ofer [1 ,3 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dept Radiol, Boston, MA 02115 USA
[2] Univ Vienna, Fac Math, Vienna, Austria
[3] Harvard Med Sch, Brigham & Womens Hosp, Dept Psychiat, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
EPI DISTORTION; CLASSIFICATION; REGISTRATION; SIGNAL;
D O I
10.1016/j.neuroimage.2021.117934
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Segmentation of brain tissue types from diffusion MRI (dMRI) is an important task, required for quantification of brain microstructure and for improving tractography. Current dMRI segmentation is mostly based on anatomical MRI (e.g., T1-and T2-weighted) segmentation that is registered to the dMRI space. However, such inter modality registration is challenging due to more image distortions and lower image resolution in dMRI as compared with anatomical MRI. In this study, we present a deep learning method for diffusion MRI segmentation, which we refer to as DDSeg. Our proposed method learns tissue segmentation from high-quality imaging data from the Human Connectome Project (HCP), where registration of anatomical MRI to dMRI is more precise. The method is then able to predict a tissue segmentation directly from new dMRI data, including data collected with different acquisition protocols, without requiring anatomical data and inter-modality registration. We train a convolutional neural network (CNN) to learn a tissue segmentation model using a novel augmented target loss function designed to improve accuracy in regions of tissue boundary. To further improve accuracy, our method adds diffusion kurtosis imaging (DKI) parameters that characterize non-Gaussian water molecule diffusion to the conventional diffusion tensor imaging parameters. The DKI parameters are calculated from the recently proposed mean-kurtosis-curve method that corrects implausible DKI parameter values and provides additional features that discriminate between tissue types. We demonstrate high tissue segmentation accuracy on HCP data, and also when applying the HCP-trained model on dMRI data from other acquisitions with lower resolution and fewer gradient directions.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Semi-supervised deep learning of brain tissue segmentation
    Ito, Ryo
    Nakae, Ken
    Hata, Junichi
    Okano, Hideyuki
    Ishii, Shin
    NEURAL NETWORKS, 2019, 116 : 25 - 34
  • [22] Segmentation of epicardial adipose tissue in cardiac MRI using deep learning
    Fulton, Miranda R.
    Givan, Amy H.
    Fernandez-del-Valle, Maria
    Klingensmith, Jon D.
    MEDICAL IMAGING 2020: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2021, 11317
  • [23] Deep learning for brain metastasis detection and segmentation in longitudinal MRI data
    Huang, Yixing
    Bert, Christoph
    Sommer, Philipp
    Frey, Benjamin
    Gaipl, Udo
    Distel, Luitpold, V
    Weissmann, Thomas
    Uder, Michael
    Schmidt, Manuel A.
    Dorfler, Arnd
    Maier, Andreas
    Fietkau, Rainer
    Putz, Florian
    MEDICAL PHYSICS, 2022, 49 (09) : 5773 - 5786
  • [24] Deep learning techniques for the fully automated detection and segmentation of brain MRI
    Tamer, Ahmed
    Youssef, Ahmed
    Ibrahim, Mohammed
    Abd-El Aziz, Mostafa
    Hesham, Youssef
    Mohammed, Zeyad
    Eissa, M. M.
    Ahmed, Soha
    Khoriba, Ghada
    5TH INTERNATIONAL CONFERENCE ON COMPUTING AND INFORMATICS (ICCI 2022), 2022, : 310 - 315
  • [25] Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions
    Akkus, Zeynettin
    Galimzianova, Alfiia
    Hoogi, Assaf
    Rubin, Daniel L.
    Erickson, Bradley J.
    JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) : 449 - 459
  • [26] Tumor Segmentation in Multimodal Brain MRI Using Deep Learning Approaches
    Al Shehri, Waleed
    Jannah, Najlaa
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (09): : 343 - 351
  • [27] Automated claustrum segmentation in human brain MRI using deep learning
    Li, Hongwei
    Menegaux, Aurore
    Schmitz-Koep, Benita
    Neubauer, Antonia
    Baeuerlein, Felix J. B.
    Shit, Suprosanna
    Sorg, Christian
    Menze, Bjoern
    Hedderich, Dennis
    HUMAN BRAIN MAPPING, 2021, 42 (18) : 5862 - 5872
  • [28] Automated Segmentation of Brain Tumor MRI Images Using Deep Learning
    Rajendran, Surendran
    Rajagopal, Suresh Kumar
    Thanarajan, Tamilvizhi
    Shankar, K.
    Kumar, Sachin
    Alsubaie, Najah M.
    Ishak, Mohamad Khairi
    Mostafa, Samih M.
    IEEE ACCESS, 2023, 11 : 64758 - 64768
  • [29] Tumor Segmentation in Multimodal Brain MRI Using Deep Learning Approaches
    Al Shehri, Waleed
    Jannah, Najlaa
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (08): : 343 - 351
  • [30] Interinstitutional Portability of a Deep Learning Brain MRI Lesion Segmentation Algorithm
    Rauschecker, Andreas M.
    Gleason, Tyler J.
    Nedelec, Pierre
    Duong, Michael Tran
    Weiss, David A.
    Calabrese, Evan
    Colby, John B.
    Sugrue, Leo P.
    Rudie, Jeffrey D.
    Hess, Christopher P.
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2022, 4 (01)