Real-time recognition of on-branch olive ripening stages by a deep convolutional neural network

被引:30
|
作者
Khosravi, Hossein [1 ]
Saedi, Seyed Iman [2 ]
Rezaei, Mehdi [2 ]
机构
[1] Shahrood Univ Technol, Fac Elect & Robot Engn, POB 3619995161, Shahrood, Iran
[2] Shahrood Univ Technol, Fac Agr, POB 3619995161, Shahrood, Iran
关键词
On-branch olive; Ripening stages; CNN; Optimization; Classification; Precision horticulture; PHENOLIC-COMPOUNDS; OIL; CULTIVARS; QUALITY; FRUIT; DATE; IDENTIFICATION; QUANTITY;
D O I
10.1016/j.scienta.2021.110252
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
Olive in its various ripening stages is an important agricultural product, especially for its oil. Early detection of ripening stages of on-branch olives provides an insight into suitable site-specific managements. To fulfill these requirements, a model has been developed in the current study. This model is based on RGB images and deep Convolutional Neural Networks (CNN). Two Iranian olive cultivars (Zard and Roghani) in four ripening stages (immature, green maturity, black maturity, and fully mature) were considered (total eight classes). No structured imaging system was considered to ensure a natural condition of the experiment and generality of the method. The proposed model was selected based upon testing several popular or developed CNNs, and according to the criterion such as accuracy, prediction time, and computational burden. Multiple layers of Convolution, Max-Pooling, and Batch Normalization, followed by a Global Average Pooling layer (GAP), were contained in the proposed model. For this network, six different optimizers, i.e., Adagrad, SGD, SGDM, RMSProp, Adam, and Nadam, were evaluated, among which Nadam showed the best efficiency. According to the results, the overall accuracy of the proposed model was 91.91 %, and it performed the processing of a single frame in only 12.64 ms on CPU. It reflects the real-time potential and the robustness of the model to classify on-branch olives based on their ripening stages. If an orchard consists of just Zard cultivar or both the Zard and Roghani cultivars, the unripe Zard cultivar, among all eight classes, will be recognized with 100 % accuracy. However, if the Roghani cultivar is only considered, the over-ripening stage will be recognized with the highest accuracy. The results of this study showed that the proposed model could be effectively embedded in a system to treat olive trees based on the conditions of a particular branch in precision horticulture.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Real-Time Embedded Traffic Sign Recognition Using Efficient Convolutional Neural Network
    Xie Bangquan
    Xiong, Weng Xiao
    IEEE ACCESS, 2019, 7 : 53330 - 53346
  • [22] Real-Time Underwater Image Recognition with FPGA Embedded System for Convolutional Neural Network
    Zhao, Minghao
    Hu, Chengquan
    Wei, Fenglin
    Wang, Kai
    Wang, Chong
    Jiang, Yu
    SENSORS, 2019, 19 (02)
  • [23] Dual integrated convolutional neural network for real-time facial expression recognition in the wild
    Sumeet Saurav
    Prashant Gidde
    Ravi Saini
    Sanjay Singh
    The Visual Computer, 2022, 38 : 1083 - 1096
  • [24] Efficient inception V2 based deep convolutional neural network for real-time hand action recognition
    Bose, S. Rubin
    Kumar, V. Sathiesh
    IET IMAGE PROCESSING, 2020, 14 (04) : 688 - 696
  • [25] Tiny Fusion: Tiny Deep Convolutional Neural Network for Real-time Image Fusion
    Wang, Jixiao
    Li, Yang
    Miao, Zhuang
    Wang, Jiabao
    Zhao, Xun
    2019 2ND IEEE INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND SIGNAL PROCESSING (ICICSP), 2019, : 384 - 389
  • [26] A real-time hourly ozone prediction system using deep convolutional neural network
    Ebrahim Eslami
    Yunsoo Choi
    Yannic Lops
    Alqamah Sayeed
    Neural Computing and Applications, 2020, 32 : 8783 - 8797
  • [27] Real-Time Fuel Truck Detection Algorithm Based on Deep Convolutional Neural Network
    Alsanad, Hamid R.
    Ucan, Osman N.
    Ilyas, Muhammad
    Khan, Atta Ur Rehman
    Bayat, Oguz
    IEEE ACCESS, 2020, 8 : 118808 - 118817
  • [28] Real-Time Prediction of Transarterial Drug Delivery Based on a Deep Convolutional Neural Network
    Yuan, Xin-Yi
    Hua, Yue
    Aubry, Nadine
    Zhussupbekov, Mansur
    Antaki, James F.
    Zhou, Zhi-Fu
    Peng, Jiang-Zhou
    APPLIED SCIENCES-BASEL, 2022, 12 (20):
  • [29] A Novel Real-time Driver Monitoring System Based on Deep Convolutional Neural Network
    Zhao, Yiheng
    Mammeri, Abdelhamid
    Boukerche, Azzedine
    2019 IEEE INTERNATIONAL SYMPOSIUM ON ROBOTIC AND SENSORS ENVIRONMENTS (ROSE 2019), 2019, : 198 - 204
  • [30] A real-time hourly ozone prediction system using deep convolutional neural network
    Eslami, Ebrahim
    Choi, Yunsoo
    Lops, Yannic
    Sayeed, Alqamah
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (13): : 8783 - 8797