Chassis Assembly Detection and Identification Based on Deep Learning Component Instance Segmentation

被引:5
|
作者
Liu, Guixiong [1 ]
He, Binyuan [1 ]
Liu, Siyuang [1 ]
Huang, Jian [1 ]
机构
[1] South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510641, Guangdong, Peoples R China
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 08期
关键词
chassis assembly; deep learning; instance segmentation; chassis components; standard dictionary;
D O I
10.3390/sym11081001
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Chassis assembly quality is a necessary step to improve product quality and yield. In recent years, with the continuous expansion of deep learning method, its application in product quality detection is increasingly extensive. The current limitations and shortcomings of existing quality detection methods and the feasibility of improving the deep learning method in quality detection are presented and discussed in this paper. According to the characteristics of numerous parts and complex types of chassis assembly components, a method for chassis assembly detection and identification based on deep learning component segmentation is proposed. In the proposed method, assembly quality detection is first performed using the Mask regional convolutional neural network component instance segmentation method, which reduces the influence of complex illumination conditions and background detection. Next, a standard dictionary of chassis assembly is built, which is connected with Mask R-CNN in a cascading way. The component mask is obtained through the detection result, and the component category and assembly quality information is extracted to realize chassis assembly detection and identification. To evaluate the proposed method, an industrial assembly chassis was used to create datasets, and the method is effective in limited data sets of industrial assembly chassis. The experimental results indicate that the accuracy of the proposed method can reach 93.7%. Overall, the deep learning method realizes complete automation of chassis assembly detection.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] AUTOMATIC DETECTION AND TRACKING OF MOUNTING BEHAVIOR IN CATTLE USING A DEEP LEARNING-BASED INSTANCE SEGMENTATION MODEL
    Noe, Su myat
    Zin, Thi thi
    Tin, Pyke
    Kobayashi, Ikuo
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2022, 18 (01): : 211 - 220
  • [32] Deep learning-based image classification of sea turtles using object detection and instance segmentation models
    Baek, Jong-Won
    Kim, Jung-Il
    Kim, Chang-Bae
    PLOS ONE, 2024, 19 (11):
  • [33] Weakly Supervised Instance Segmentation by Deep Community Learning
    Hwang, Jaedong
    Kim, Seohyun
    Son, Jeany
    Han, Bohyung
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, : 1019 - 1028
  • [34] Deep Learning-based Brightness Adaptive Instance Segmentation Using CLAHE
    Lee, Dongwoo
    Kim, Yeongmin
    Hwang, Myun Joong
    Journal of Institute of Control, Robotics and Systems, 2025, 31 (03) : 225 - 230
  • [35] INSTANCE SEGMENTATION BY LEARNING DEEP FEATURE IN EMBEDDING SPACE
    Shang, Chao
    Wu, Qingbo
    Meng, Fanman
    Xu, Linfeng
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 2444 - 2448
  • [36] Instance Segmentation of Underwater Images by Using Deep Learning
    Chen, Jianfeng
    Zhu, Shidong
    Luo, Weilin
    ELECTRONICS, 2024, 13 (02)
  • [37] Deep Learning-Based Instance Segmentation for Indoor Fire Load Recognition
    Zhou, Yu-Cheng
    Hu, Zhen-Zhong
    Yan, Ke-Xiao
    Lin, Jia-Rui
    IEEE ACCESS, 2021, 9 : 148771 - 148782
  • [38] MRISNet:Deep-learning-based Martian instance segmentation against blur
    Meng Liu
    Jin Liu
    Xin Ma
    Earth Science Informatics, 2023, 16 : 965 - 981
  • [39] Instance Segmentation of Low-texture Industrial Parts Based on Deep Learning
    Zhang, Yue
    Shi, Zelin
    Zhuang, Chungang
    2021 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2021), 2021, : 756 - 761
  • [40] MRISNet:Deep-learning-based Martian instance segmentation against blur
    Liu, Meng
    Liu, Jin
    Ma, Xin
    EARTH SCIENCE INFORMATICS, 2023, 16 (01) : 965 - 981