Enhanced Unconditionally Positive Finite Difference Method for Advection-Diffusion-Reaction Equations

被引:12
|
作者
Ndou, Ndivhuwo [1 ]
Dlamini, Phumlani [1 ]
Jacobs, Byron Alexander [1 ]
机构
[1] Univ Johannesburg, Dept Math & Appl Math, ZA-2006 Johannesburg, South Africa
基金
芬兰科学院; 新加坡国家研究基金会;
关键词
proper orthogonal decomposition; unconditionally positive finite difference method; advection-diffusion-reaction equations; enhanced unconditionally positive finite difference method; PROPER ORTHOGONAL DECOMPOSITION; SPECTRAL ELEMENT METHOD; STABILITY ANALYSIS; POD; SCHEME; FORMULATION;
D O I
10.3390/math10152639
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we develop the enhanced unconditionally positive finite difference method (EUPFD), and use it to solve linear and nonlinear advection-diffusion-reaction (ADR) equations. This method incorporates the proper orthogonal decomposition technique to the unconditionally positive finite difference method (UPFD) to reduce the degree of freedom of the ADR equations. We investigate the efficiency and effectiveness of the proposed method by checking the error, convergence rate, and computational time that the method takes to converge to the exact solution. Solutions obtained by the EUPFD were compared with the exact solutions for validation purposes. The agreement between the solutions means the proposed method effectively solved the ADR equations. The numerical results show that the proposed method greatly improves computational efficiency without a significant loss in accuracy for solving linear and nonlinear ADR equations.
引用
收藏
页数:18
相关论文
共 50 条
  • [11] Nonstandard methods for advection-diffusion-reaction equations
    Kojouharov, HV
    Chen, BM
    APPLICATIONS OF NONSTANDARD FINITE DIFFERENCE SCHEMES, 2000, : 55 - 108
  • [12] A new stabilized finite element method for advection-diffusion-reaction equations using quadratic elements
    Corsini, A
    Rispoli, F
    Santoriello, A
    MODELLING FLUID FLOW: THE STATE OF THE ART, 2004, : 247 - 266
  • [13] A non-standard finite difference scheme for an advection-diffusion-reaction equation
    Qin, Wendi
    Ding, Deqiong
    Ding, Xiaohua
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (15) : 3308 - 3321
  • [14] Analysis of a finite-difference scheme for a linear advection-diffusion-reaction equation
    Mickens, RE
    JOURNAL OF SOUND AND VIBRATION, 2000, 236 (05) : 901 - 903
  • [15] The Finite Volume-Complete Flux Scheme for Advection-Diffusion-Reaction Equations
    J. H. M. ten Thije Boonkkamp
    M. J. H. Anthonissen
    Journal of Scientific Computing, 2011, 46 : 47 - 70
  • [16] The Finite Volume-Complete Flux Scheme for Advection-Diffusion-Reaction Equations
    Boonkkamp, J. H. M. Ten Thije
    Anthonissen, M. J. H.
    JOURNAL OF SCIENTIFIC COMPUTING, 2011, 46 (01) : 47 - 70
  • [17] A Compact High Order Finite Volume Scheme for Advection-Diffusion-Reaction Equations
    Anthonissen, M. J. H.
    Boonkkamp, J. H. M. ten Thije
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 410 - 414
  • [18] A finite volume-finite difference method with a stiff ordinary differential equation solver for advection-diffusion-reaction equation
    Molina, Pedro
    Gavete, Luis
    Lucia Gavete, M.
    Urena, Francisco
    Jose Benito, Juan
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (09) : 1946 - 1955
  • [19] The LEM exponential integrator for advection-diffusion-reaction equations
    Caliari, Marco
    Vianello, Marco
    Bergamaschi, Luca
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 210 (1-2) : 56 - 63
  • [20] Coupling stabilized finite element methods with finite difference time integration for advection-diffusion-reaction problems
    Asensio, M. I.
    Ayuso, B.
    Sangalli, G.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (35-36) : 3475 - 3491