Wheat (Triticum aestivum L.) grain proteome response to elevated [CO2] varies between genotypes

被引:8
|
作者
Arachchige, Pramesha Madurangi S. [1 ]
Ang, Ching-Seng [2 ]
Nicolas, Marc E. [3 ]
Panozzo, Joe [4 ]
Fitzgerald, Glenn [4 ]
Hirotsu, Naoki [5 ]
Seneweera, Saman [6 ]
机构
[1] Univ Melbourne, Fac Vet & Agr Sci, 4 Water St, Creswick, Vic 3363, Australia
[2] Bio21 Mol Sci & Biotechnol Inst, Parkville, Vic 3052, Australia
[3] Univ Melbourne, Fac Vet & Agr Sci, Parkville, Vic 3400, Australia
[4] Dept Econ Dev Jobs Transport & Resources, Horsham, Vic 3400, Australia
[5] Toyo Univ, Fac Life Sci, 1-1-1 Izumino, Itakura, Gunma 3740193, Japan
[6] Univ Southern Queensland, Ctr Crop Hlth, Toowoomba, Qld 4350, Australia
基金
澳大利亚研究理事会;
关键词
Free-air carbon dioxide enrichment; Wheat; Protein; Proteome; CARBON-DIOXIDE; NITROGEN; ACCUMULATION; QUALITY; GROWTH; CROPS;
D O I
10.1016/j.jcs.2017.03.010
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
The impact of rising carbon dioxide concentration ([CO2]) in the atmosphere on wheat grain protein concentration and proteome was investigated in this study. Wheat genotypes (H45, SB003, SB062 and Yitpi) were grown in the Australian Grains Free-Air CO2 Enrichment (AGFACE) facility, Horsham, Victoria, Australia under ambient [CO2] (a[CO2], 391 mu mol mol(-1)) and elevated [CO2] (e[CO2], 550 +/- 20 mu mol mol(-1)). Grain yield and grain protein concentration were measured. Global grain proteome comparison was carried out using stable isotope dimethyl labelling followed by liquid chromatography - mass spectrometry (LC-MS/MS). Grain yield was significantly increased at e[CO2], whereas protein concentration was significantly decreased and responses varied between genotypes. Proteome-wide analysis revealed that protein composition was also altered under e[CO2]. Grain protein concentration and composition of SB003 was very responsive to e[CO2]. Mainly storage proteins were decreased at e[CO2] and the responses varied between genotypes. These findings suggest that e[CO2] may have a major impact on grain protein quality and thus bread quality and human and animal nutrition. Further, these findings suggest that [CO2] insensitive cultivars can be identified for grain quality improvement under changing climate. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:151 / 157
页数:7
相关论文
共 50 条
  • [11] Anther Culture Response in Wheat (Triticum aestivum L.) Genotypes with HMW alleles
    M. N. Barakat
    A. A. Al-Doss
    A. A. Elshafei
    K. A. Moustafa
    E. I. Ahmed
    Cereal Research Communications, 2012, 40 : 583 - 591
  • [12] Elevated CO2 Impact on Common Wheat (Triticum aestivum L.) Yield, Wholemeal Quality, and Sanitary Risk
    Blandino, Massimo
    Badeck, Franz-W
    Giordano, Debora
    Marti, Alessandra
    Rizza, Fulvia
    Scarpino, Valentina
    Vaccino, Patrizia
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2020, 68 (39) : 10574 - 10585
  • [13] Effects of elevated CO2 and O3 On the rate and duration of grain growth and harvest index in spring wheat (Triticum aestivum L.)
    Mulholland, BJ
    Craigon, J
    Black, CR
    Colls, JJ
    Atherton, J
    Landon, G
    GLOBAL CHANGE BIOLOGY, 1998, 4 (06) : 627 - 635
  • [15] Grain weight response to foliar diseases control in wheat (Triticum aestivum L.)
    Serrago, Roman A.
    Carretero, Ramiro
    Bancal, Marie Odile
    Miralles, Daniel J.
    FIELD CROPS RESEARCH, 2011, 120 (03) : 352 - 359
  • [16] Adaptation of wheat genotypes (Triticum aestivum L.) to cold climate
    Olgun, M
    Yildirim, T
    Turan, M
    ACTA AGRICULTURAE SCANDINAVICA SECTION B-SOIL AND PLANT SCIENCE, 2005, 55 (01): : 9 - 15
  • [17] Differential tolerance in wheat (Triticum aestivum L.) genotypes to metribuzin
    Kleemann, S. G. L.
    Gill, G. S.
    AUSTRALIAN JOURNAL OF AGRICULTURAL RESEARCH, 2007, 58 (05): : 452 - 456
  • [18] Effect of short heat shocks applied during grain development on wheat (Triticum aestivum L.) grain proteome
    Majoul-Haddad, Thouraya
    Bancel, Emmanuelle
    Martre, Pierre
    Triboi, Eugene
    Branlard, Gerard
    JOURNAL OF CEREAL SCIENCE, 2013, 57 (03) : 486 - 495
  • [19] Variability of grain yield components of some new winter wheat genotypes (Triticum aestivum L.)
    Sabo, M
    Bede, M
    Hardi, ZU
    ROSTLINNA VYROBA, 2002, 48 (05): : 230 - 235
  • [20] Paraquat Tolerance of Bread Wheat (Triticum aestivum L.) Genotypes
    Caglar, Ozcan
    Ozturk, Ali
    Aydin, Murat
    Bayram, Sinan
    JOURNAL OF ANIMAL AND VETERINARY ADVANCES, 2011, 10 (25): : 3363 - 3367