TREES WITH MAXIMUM SUM OF THE TWO LARGEST LAPLACIAN EIGENVALUES

被引:0
|
作者
Zheng, Yirong [1 ]
Li, Jianxi [2 ]
Chang, Sarula [3 ]
机构
[1] Xiamen Univ Technol, Sch Math & Stat, Xiamen, Fujian, Peoples R China
[2] Minnan Normal Univ, Sch Math & Stat, Zhangzhou, Fujian, Peoples R China
[3] Inner Mongolia Agr Univ, Coll Sci, Hohhot, Inner Mongolia, Peoples R China
来源
基金
美国国家科学基金会;
关键词
Tree; Laplacian Eigenvalue; Sum; BROUWERS CONJECTURE; SIGNLESS LAPLACIAN; GRAPH;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T be a tree of order n and S-2(T) be the sum of the two largest Laplacian eigenvalues of T. Fritscher et al. proved that for any tree T of order n, S-2(T) <= n + 2 - 2/n. Guan et al. determined the tree with maximum S-2(T) among all trees of order n. In this paper, we characterize the trees with S-2(T) >= n + 1 among all trees of order n except some trees. Moreover, among all trees of order n, we also determine the first [ n-2/2 j trees according to their S-2(T). This extends the result of Guan et al.
引用
收藏
页码:357 / 366
页数:10
相关论文
共 50 条
  • [21] On the sum of two largest eigenvalues of a symmetric matrix
    Javad, Ebrahimi B.
    Mohar, Bojan
    Nikiforov, Vladimir
    Ahmady, Azhvan Sheikh
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (11-12) : 2781 - 2787
  • [22] On Brouwer's conjecture for the sum of k largest Laplacian eigenvalues of graphs
    Chen, Xiaodan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 578 : 402 - 410
  • [23] LARGEST EIGENVALUES OF THE DISCRETE P-LAPLACIAN OF TREES WITH DEGREE SEQUENCES
    Biyikoglu, Tuerker
    Hellmuth, Marc
    Leydold, Josef
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2009, 18 : 202 - 210
  • [24] Ordering trees with n vertices and diameter d by their largest laplacian eigenvalues
    Guo, Shu-Guang
    UTILITAS MATHEMATICA, 2007, 74 : 65 - 69
  • [25] On the largest eigenvalues of trees
    Chen, XE
    DISCRETE MATHEMATICS, 2004, 285 (1-3) : 47 - 55
  • [26] Brouwer's conjecture for the sum of the k largest Laplacian eigenvalues of some graphs
    Wang, Ke
    Lin, Zhen
    Zhang, Shumin
    Ye, Chengfu
    OPEN MATHEMATICS, 2024, 22 (01):
  • [27] On the first two largest distance Laplacian eigenvalues of unicyclic graphs
    Lin, Hongying
    Du, Zhibin
    Zhou, Bo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 546 : 289 - 307
  • [28] Ordering trees with n vertices and matching number q by their largest Laplacian eigenvalues
    Guo, Shu-Guang
    DISCRETE MATHEMATICS, 2008, 308 (20) : 4608 - 4615
  • [29] On the sum of the largest Aα-eigenvalues of graphs
    Lin, Zhen
    AIMS MATHEMATICS, 2022, 7 (08): : 15064 - 15074
  • [30] ON THE NUMBER OF LAPLACIAN EIGENVALUES OF TREES SMALLER THAN TWO
    Zhou, Lingling
    Zhou, Bo
    Du, Zhibin
    TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (01): : 65 - 75