Fully automatic hp-adaptivity for Maxwell's equations

被引:22
|
作者
Demkowicz, L [1 ]
机构
[1] Univ Texas, Inst Computat Engn & Sci, Austin, TX 78712 USA
关键词
hp edge finite elements; hp-adaptivity;
D O I
10.1016/j.cma.2004.05.023
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
I report on the development of a fully automatic hp-adaptive strategy for the solution of time-harmonic Maxwell equations. The strategy produces a sequence of grids that deliver exponential convergence for both regular and singular solutions. Given a (coarse) mesh, we refine it first globally in both h and p, and solve the problem on the resulting fine mesh. We consider then the projection-based interpolants of the fine mesh solution with respect to both current and next (to be determined) coarse grid, and introduce the interpolation error decrease rate equal to the difference of the old and new (coarse) mesh interpolation errors vs. number of degrees-of-freedom added. The optimal hp-refinements leading to the next coarse grid are then determined by maximizing the interpolation error decrease rate. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:605 / 624
页数:20
相关论文
共 50 条
  • [41] MAXWELL'S EQUATIONS
    Turnbull, Graham
    PROCEEDINGS OF THE IEEE, 2013, 101 (07) : 1801 - 1805
  • [42] Adaptive hp-FEM with Arbitrary-Level Hanging Nodes for Maxwell's Equations
    Solin, Pavel
    Dubcova, Lenka
    Dolezel, Ivo
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2010, 2 (04) : 518 - 532
  • [43] Fully discrete finite element approaches for time-dependent Maxwell's equations
    Ciarlet, P
    Zou, J
    NUMERISCHE MATHEMATIK, 1999, 82 (02) : 193 - 219
  • [44] Adaptive hp-Finite Element Computations for Time-Harmonic Maxwell's Equations
    Jiang, Xue
    Zhang, Linbo
    Zheng, Weiying
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 13 (02) : 559 - 582
  • [45] Stable and convergent fully discrete interior-exterior coupling of Maxwell's equations
    Kovacs, Balazs
    Lubich, Christian
    NUMERISCHE MATHEMATIK, 2017, 137 (01) : 91 - 117
  • [46] Fully Discrete A-φ Finite Element Method for Maxwell's Equations with Nonlinear Conductivity
    Kang, Tong
    Chen, Tao
    Zhang, Huai
    Kim, Kwang Ik
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (06) : 2083 - 2108
  • [47] Correction to: Stable and convergent fully discrete interior–exterior coupling of Maxwell’s equations
    Jörg Nick
    Balázs Kovács
    Christian Lubich
    Numerische Mathematik, 2021, 147 : 997 - 1000
  • [48] Fully discrete finite element approaches for time-dependent Maxwell's equations
    Ciarlet Jr. P.
    Zou J.
    Numerische Mathematik, 1999, 82 (2) : 193 - 219
  • [49] Complex Maxwell's equations
    A.I.Arbab
    Chinese Physics B, 2013, 22 (03) : 115 - 120
  • [50] On the universality of Maxwell's equations
    Sattinger, D. H.
    MONATSHEFTE FUR MATHEMATIK, 2018, 186 (03): : 503 - 523