A Photonic Nanojet as Tunable and Polarization-Sensitive Optical Tweezers

被引:19
|
作者
Kovrov, Aleksandr [1 ]
Novitsky, Andrey [2 ,3 ]
Karabchevsky, Alina [4 ,5 ,6 ]
Shalin, Alexander S. [7 ]
机构
[1] Tech Univ Denmark, Deprtment Energy Convers & Storage, DTU Riso Campus,Frederiksborgvej 399, DK-4000 Roskilde, Denmark
[2] Tech Univ Denmark, Dept Photon Engn, Orsteds Plads 343, DK-2800 Lyngby, Denmark
[3] Belarusian State Univ, Dept Theoret Phys & Astrophys, Nezavisimosti Ave 4, Minsk 220030, BELARUS
[4] Ben Gurion Univ Negev, Electroopt Engn Unit, IL-8410501 Beer Sheva, Israel
[5] Ben Gurion Univ Negev, Ilse Katz Inst Nanoscale Sci & Technol, IL-8410501 Beer Sheva, Israel
[6] Ben Gurion Univ Negev, Ctr Quantum Informat Sci & Technol, IL-8410501 Beer Sheva, Israel
[7] ITMO Univ, Nanooptomech Lab, St Petersburg 197101, Russia
基金
俄罗斯科学基金会;
关键词
near-field optics; optical tweezers; optomechanics; photonic nanojet; NANOPARTICLES; LIGHT; SUBWAVELENGTH; FORCES;
D O I
10.1002/andp.201800129
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The ability to manipulate small objects with focused laser beams has opened a venue for investigating dynamical phenomena relevant to both fundamental and applied sciences. However, manipulating nano-sized objects requires subwavelength field localization, provided by auxiliary nano- and microstructures. Particularly, dielectric microparticles can be used to confine light to an intense beam with a subwavelength waist, called a photonic nanojet (PNJ), which can provide sufficient field gradients for trapping nano-objects. Herein, the scheme for wavelength-tunable and nanoscale-precise optical trapping is elaborated, and the possibility of lateral nanoparticle movement using the PNJ's side lobes is shown for the first time. In addition, the possibility of subwavelength positioning using polarization switching is shown. The estimated stability with respect to Brownian motion is higher compared to conventional optical trapping schemes.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] A polarization-sensitive diffractive optical device for document security
    Aubrecht, Ivo
    Miler, Miroslav
    PHOTON MANAGEMENT III, 2008, 6994
  • [32] Adaptive target detection with a polarization-sensitive optical system
    Meng, Lingfei
    Kerekes, John P.
    APPLIED OPTICS, 2011, 50 (13) : 1925 - 1932
  • [33] Polarization-sensitive optical phenomena in semiconducting and metallic nanowires
    Ruda, HE
    Shik, A
    PHYSICAL REVIEW B, 2005, 72 (11)
  • [34] Polarization-sensitive quantum optical coherence tomography: Experiment
    Booth, Mark C.
    Saleh, Bahaa E. A.
    Teich, Malvin Carl
    OPTICS COMMUNICATIONS, 2011, 284 (10-11) : 2542 - 2549
  • [35] Polarization-sensitive optical properties of metallic and semiconducting nanowires
    Ruda, Harry E.
    Shik, Alexander
    PLASMONICS IN BIOLOGY AND MEDICINE III, 2006, 6099
  • [36] Evaluation of photodamage with polarization-sensitive optical coherence tomography
    Nguyen Hoang Trung
    Lee, Cheng-Yu
    Tsai, Meng-Tsan
    BIOMEDICAL IMAGING AND SENSING CONFERENCE, 2018, 10711
  • [37] Simplified method for polarization-sensitive optical coherence tomography
    Roth, JE
    Kozak, JA
    Yazdanfar, S
    Rollins, AM
    Izatt, JA
    OPTICS LETTERS, 2001, 26 (14) : 1069 - 1071
  • [38] Polarization-sensitive optical phenomena in thick semiconducting nanowires
    Ruda, H. E.
    Shik, A.
    JOURNAL OF APPLIED PHYSICS, 2006, 100 (02)
  • [39] Polarization-sensitive optical coherence tomography of dental structures
    Baumgartner, A
    Dichtl, S
    Hitzenberger, CK
    Sattmann, H
    Robl, B
    Moritz, A
    Fercher, ZF
    Sperr, W
    CARIES RESEARCH, 2000, 34 (01) : 59 - 69
  • [40] Polarization effect on focal length of photonic nanojet
    Yang, Yu-Jing
    Zhang, De-Long
    APPLIED PHYSICS B-LASERS AND OPTICS, 2023, 129 (11):