3D Non-rigid Registration of Deformable Object Using GPU

被引:0
|
作者
Lee, Junesuk [1 ]
Kim, Eung-su [1 ]
Park, Soon-Yong [2 ]
机构
[1] Kyungpook Natl Univ, Sch Comp Sci & Engn, Daegu, South Korea
[2] Kyungpook Natl Univ, Sch Elect Engn, Daegu, South Korea
关键词
3D reconstruction; Non-rigid registration; Non-rigid ICP; Deformable registration; GPU; GAUSS-NEWTON;
D O I
10.1007/978-3-030-31332-6_53
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a method to quickly process non-rigid registration between 3D deformable data using a GPU-based non-rigid ICP(Iterative Closest Point) algorithm. In this paper, we sequentially acquire whole-body model data of a person moving dynamically from a single RGBD camera. We use Dense Optical Flow algorithm to find the corresponding pixels between two consecutive frames. Next, we select nodes to estimate 3D deformation matrices by uniform sampling algorithm. We use a GPU-based non-rigid ICP algorithm to estimate the 3D transformation matrices of each node at high speed. We use non-linear optimization algorithm methods in the non-rigid ICP algorithm. We define energy functions for an estimate the exact 3D transformation matrices. We use a proposed GPU-based method because it takes a lot of computation time to calculate the 3D transformation matrices of all nodes. We apply a 3D transformation to all points with a weight-based affine transformation algorithm. We demonstrate the high accuracy of non-rigid registration and the fast runtime of the non-rigid ICP algorithm through experimental results.
引用
收藏
页码:610 / 619
页数:10
相关论文
共 50 条
  • [21] Evaluation of sampling method effects in 3D non-rigid registration
    Marcelo Saval-Calvo
    Jorge Azorin-Lopez
    Andres Fuster-Guillo
    Jose Garcia-Rodriguez
    Sergio Orts-Escolano
    Alberto Garcia-Garcia
    Neural Computing and Applications, 2017, 28 : 953 - 967
  • [22] An improved 3D shape context registration method for non-rigid surface registration
    Xiao, Di
    Zahra, David
    Bourgeat, Pierrick
    Berghofer, Paula
    Tamayo, Oscar Acosta
    Wimberley, Catriona
    Gregoire, Marie Claude
    Salvado, Olivier
    MEDICAL IMAGING 2010: IMAGE PROCESSING, 2010, 7623
  • [23] 3D Non-Rigid Deformable Surface Estimation Without Feature Correspondence
    Willimon, Bryan
    Walker, Ian
    Birchfield, Stan
    2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2013, : 646 - 651
  • [24] Non-rigid multi-modal registration on the GPU
    Vetter, Christoph
    Guetter, Christoph
    Xu, Chenyang
    Westermann, Rudiger
    MEDICAL IMAGING 2007: IMAGE PROCESSING, PTS 1-3, 2007, 6512
  • [25] An efficient algorithm for non-rigid object registration
    Makovetskii, A.
    Voronin, S.
    Kober, V
    Voronin, A.
    COMPUTER OPTICS, 2020, 44 (01) : 67 - 73
  • [26] Non-rigid 3D Object Retrieval with a Learned Shape Descriptor
    Shi, Xiangfu
    Zhao, Jieyu
    Zhang, Long
    Ye, Xulun
    IMAGE AND GRAPHICS (ICIG 2017), PT II, 2017, 10667 : 24 - 37
  • [27] 3D Non-rigid Object Classification with Mesh Convolution Features
    Shi C.-W.
    Zhao J.-Y.
    Chen Y.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2020, 48 (04): : 648 - 653
  • [28] Fully automatic cardiac motion estimation in 3D echocardiography using non-rigid registration
    Wu, H. S.
    Wang, L. S.
    Xiong, H. J.
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2013, 163 : S25 - S25
  • [29] Tool path correction for robotic deburring using local non-rigid 3D registration
    Peng, Peiyang
    Wu, Chengxing
    Yang, Jixiang
    Ding, Han
    ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2024, 89
  • [30] Data Augmentation using non-rigid CPD Registration for 3D Facial Expression Recognition
    Trimech, Imen Hamrouni
    Maalej, Ahmed
    Ben Amara, Najoua Essoukri
    2019 16TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD), 2019, : 164 - 169