Artificial intelligence in oncology: Path to implementation

被引:61
|
作者
Chua, Isaac S. [1 ,2 ,3 ]
Gaziel-Yablowitz, Michal [1 ,3 ]
Korach, Zfania T. [1 ,3 ]
Kehl, Kenneth L. [3 ,4 ,5 ]
Levitan, Nathan A. [6 ]
Arriaga, Yull E. [6 ]
Jackson, Gretchen P. [6 ,7 ]
Bates, David W. [1 ,3 ]
Hassett, Michael [3 ,4 ,5 ]
机构
[1] Brigham & Womens Hosp, Dept Med, Div Gen Internal Med & Primary Care, 75 Francis St, Boston, MA 02115 USA
[2] Dana Farber Canc Inst, Dept Psychosocial Oncol & Palliat Care, Boston, MA 02115 USA
[3] Harvard Med Sch, Boston, MA 02115 USA
[4] Dana Farber Canc Inst, Div Populat Sci, Boston, MA 02115 USA
[5] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA 02115 USA
[6] IBM Watson Hlth, Cambridge, MA USA
[7] Vanderbilt Univ, Med Ctr, Dept Pediat Surg, Nashville, TN USA
来源
CANCER MEDICINE | 2021年 / 10卷 / 12期
关键词
artificial intelligence; deep learning; machine learning; oncology; TREATMENT RECOMMENDATIONS; CLINICAL-TRIALS; BREAST-CANCER; CARE; AI; INTEGRATION; CHALLENGES; BEHAVIOR; PATIENT; IMPACT;
D O I
10.1002/cam4.3935
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
In recent years, the field of artificial intelligence (AI) in oncology has grown exponentially. AI solutions have been developed to tackle a variety of cancer-related challenges. Medical institutions, hospital systems, and technology companies are developing AI tools aimed at supporting clinical decision making, increasing access to cancer care, and improving clinical efficiency while delivering safe, high-value oncology care. AI in oncology has demonstrated accurate technical performance in image analysis, predictive analytics, and precision oncology delivery. Yet, adoption of AI tools is not widespread, and the impact of AI on patient outcomes remains uncertain. Major barriers for AI implementation in oncology include biased and heterogeneous data, data management and collection burdens, a lack of standardized research reporting, insufficient clinical validation, workflow and user-design challenges, outdated regulatory and legal frameworks, and dynamic knowledge and data. Concrete actions that major stakeholders can take to overcome barriers to AI implementation in oncology include training and educating the oncology workforce in AI; standardizing data, model validation methods, and legal and safety regulations; funding and conducting future research; and developing, studying, and deploying AI tools through multidisciplinary collaboration.
引用
收藏
页码:4138 / 4149
页数:12
相关论文
共 50 条
  • [41] Artificial intelligence for nuclear medicine in oncology
    Kenji Hirata
    Hiroyuki Sugimori
    Noriyuki Fujima
    Takuya Toyonaga
    Kohsuke Kudo
    Annals of Nuclear Medicine, 2022, 36 : 123 - 132
  • [42] Artificial Intelligence in Medicine and Rediation Oncology
    Weidlich, Vincent
    Weidlich, Georg A.
    CUREUS, 2018, 10 (04):
  • [43] Editorial: Artificial intelligence and imaging for oncology
    Zhou, Yuxiang
    Li, Zhimin
    Yadav, Poonam
    FRONTIERS IN ONCOLOGY, 2025, 15
  • [44] Uses and limitations of artificial intelligence for oncology
    Kolla, Likhitha
    Parikh, Ravi B.
    CANCER, 2024, 130 (12) : 2101 - 2107
  • [45] The Future of Artificial Intelligence in Radiation Oncology
    Thompson, Reid F.
    Valdes, Gilmer
    Fuller, Clifton David
    Carpenter, Colin M.
    Morin, Olivier
    Aneja, Sanjay
    Lindsay, William D.
    Aerts, Hugo J. W. L.
    Agrimson, Barbara
    Deville, Curtiland
    Rosenthal, Seth A.
    Yu, James B.
    Thomas, Charles R., Jr.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 102 (02): : 247 - 248
  • [46] Responsible Artificial Intelligence in Radiation Oncology
    Teng, C. L.
    Bhullar, A. S.
    Jermain, P.
    Jordon, D.
    Nawfel, R.
    Patel, P.
    Sean, R.
    Shang, M.
    Wu, D. H.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2024, 120 (02): : E659 - E659
  • [47] Artificial Intelligence Applications in Radiation Oncology
    Dinapoli, N.
    Lenkowicz, J.
    Masciocchi, C.
    Damiani, A.
    Boldrini, L.
    Cusumano, D.
    Valentini, V.
    RADIOTHERAPY AND ONCOLOGY, 2019, 133 : S1 - S1
  • [48] Artificial Intelligence in Radiation Oncology Imaging
    Thompson, Reid F.
    Valdes, Gilmer
    Fuller, Clifton David
    Carpenter, Colin M.
    Morin, Olivier
    Aneja, Sanjay
    Lindsay, William D.
    Aerts, Hugo J. W. L.
    Agrimson, Barbara
    Deville, Curtiland, Jr.
    Rosenthal, Seth A.
    Yu, James B.
    Thomas, Charles R., Jr.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 102 (04): : 1159 - 1161
  • [49] Design and implementation path of intelligent transportation information system based on artificial intelligence technology
    Xia, Wen-hui
    Zhou, Dan
    Xia, Qian-yin
    Zhang, Lan-rui
    JOURNAL OF ENGINEERING-JOE, 2020, 2020 (13): : 482 - 485
  • [50] Artificial Intelligence and the Implementation Challenge
    Shaw, James
    Rudzicz, Frank
    Jamieson, Trevor
    Goldfarb, Avi
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2019, 21 (07)