PERFORMANCE BOUNDS FOR SPARSE ESTIMATION WITH RANDOM NOISE

被引:4
|
作者
Ben-Haim, Zvika [1 ]
Eldar, Yonina C. [1 ]
机构
[1] Technion Israel Inst Technol, IL-32000 Haifa, Israel
关键词
Sparse estimation; Cramer-Rao bound; RECOVERY;
D O I
10.1109/SSP.2009.5278597
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The problem considered in this paper is to estimate a deterministic vector representing elements in an overcomplete dictionary. The vector is assumed to be sparse and is to be estimated from measurements corrupted by Gaussian noise. Our goal is to derive a lower bound on the mean-squared error (MSE) achievable in this setting. To this end, an appropriate definition of unbiasedness in the sparse setting is developed, and the unbiased Cramer-Rao bound (CRB) is derived. The resulting bound is shown to be identical to the MSE of the oracle estimator. Combined with the fact that the CRB is achieved at high signal-to-noise ratios by the maximum likelihood technique, our result provides a new interpretation for the common practice of using the oracle estimator as a gold standard against which practical approaches are compared.
引用
收藏
页码:225 / 228
页数:4
相关论文
共 50 条
  • [41] Estimation of the Domination Number in Sparse Random Graphs and Applications
    Nehez, Martin
    Bernat, Dusan
    Lelovsky, Marek
    PROCEEDINGS OF THE FIFTH EUROPEAN CONFERENCE ON THE ENGINEERING OF COMPUTER-BASED SYSTEMS (ECBS 2017), 2017,
  • [42] Performance Bounds on Compressed Sensing with Poisson Noise
    Willett, Rebecca M.
    Raginsky, Maxim
    2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4, 2009, : 174 - 178
  • [43] Sparse Unmixing of Hyperspectral Data with Noise Level Estimation
    Li, Chang
    Ma, Yong
    Mei, Xiaoguang
    Fan, Fan
    Huang, Jun
    Ma, Jiayi
    REMOTE SENSING, 2017, 9 (11)
  • [44] DOA ESTIMATION IN HETEROSCEDASTIC NOISE WITH SPARSE BAYESIAN LEARNING
    Gerstoft, Peter
    Nannuru, Santosh
    Mecklenbraeuker, Christoph F.
    Leus, Geert
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 3459 - 3463
  • [45] DOA Estimation in Heteroscedastic Noise with sparse Bayesian Learning
    Gerstoft, Peter
    Mecklenhrauker, Christoph E.
    Nannuru, Santosh
    Leus, Geert
    2020 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM (2020 ACES-MONTEREY), 2020,
  • [46] Minimum Variance Estimation for the Sparse Signal in Noise Model
    Schmutzhard, Sebastian
    Jung, Alexander
    Hlawatsch, Franz
    2011 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2011, : 124 - 128
  • [47] Unbiased Estimation of a Sparse Vector in White Gaussian Noise
    Jung, Alexander
    Ben-Haim, Zvika
    Hlawatsch, Franz
    Eldar, Yonina C.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (12) : 7856 - 7876
  • [48] DOA Estimation in Heteroscedastic Noise with sparse Bayesian Learning
    Gerstoft, Peter
    Mecklenbraeuker, Christoph F.
    Nannuru, Santosh
    Leus, Geert
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2020, 35 (11): : 1439 - 1440
  • [49] ON UNBIASED ESTIMATION OF SPARSE VECTORS CORRUPTED BY GAUSSIAN NOISE
    Jung, Alexander
    Ben-Haim, Zvika
    Hlawatsch, Franz
    Eldar, Yonina C.
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 3990 - 3993
  • [50] Sparse spatial spectral estimation in directional noise environment
    Yang, Long
    Yang, Yixin
    Wang, Yong
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2016, 140 (03): : EL263 - EL268