Argue to Learn: Accelerated Argumentation-Based Learning

被引:0
|
作者
Ayoobi, H. [1 ]
Cao, M. [2 ]
Verbrugge, R. [1 ]
Verheij, B. [1 ]
机构
[1] Univ Groningen, Fac Sci & Engn, Dept Artificial Intelligence, Bernoulli Inst, Groningen, Netherlands
[2] Univ Groningen, Fac Sci & Engn, Inst Engn & Technol ENTEG, Groningen, Netherlands
关键词
Argumentation-Based Learning; Online Incremental Learning; Argumentation Theory; ONLINE;
D O I
10.1109/ICMLA52953.2021.00183
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Human agents can acquire knowledge and learn through argumentation. Inspired by this fact, we propose a novel argumentation-based machine learning technique that can be used for online incremental learning scenarios. Existing methods for online incremental learning problems typically do not generalize well from just a few learning instances. Our previous argumentation-based online incremental learning method outperformed state-of-the-art methods in terms of accuracy and learning speed. However, it was neither memory-efficient nor computationally efficient since the algorithm used the power set of the feature values for updating the model. In this paper, we propose an accelerated version of the algorithm, with polynomial instead of exponential complexity, while achieving higher learning accuracy. The proposed method is at least 200x faster than the original argumentation-based learning method and is more memory-efficient.
引用
收藏
页码:1118 / 1123
页数:6
相关论文
共 50 条
  • [1] Argumentation-based learning
    Fukumoto, Taro
    Sawamura, Hajime
    ARGUMENTATION IN MULTI-AGENT SYSTEMS, 2007, 4766 : 17 - +
  • [2] Argumentation-Based Online Incremental Learning
    Ayoobi, Hamed
    Cao, Ming
    Verbrugge, Rineke
    Verheij, Bart
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2022, 19 (04) : 3419 - 3433
  • [3] Argumentation-Based Reinforcement Learning for RoboCup Keepaway
    Gao, Yang
    Toni, Francesca
    Craven, Robert
    COMPUTATIONAL MODELS OF ARGUMENT, 2012, 245 : 519 - +
  • [4] Argumentation-Based Reinforcement Learning for RoboCup Soccer Keepaway
    Gao, Yang
    Toni, Francesca
    Craven, Robert
    20TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (ECAI 2012), 2012, 242 : 342 - 347
  • [5] Coordinated inductive learning using argumentation-based communication
    Ontanon, Santiago
    Plaza, Enric
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2015, 29 (02) : 266 - 304
  • [6] Handling Unforeseen Failures Using Argumentation-Based Learning
    Ayoobi, H.
    Cao, M.
    Verbrugge, R.
    Verheij, B.
    2019 IEEE 15TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2019, : 1699 - 1704
  • [7] Argumentation-based negotiation
    Rahwan, I
    Ramchurn, SD
    Jennings, NR
    McBurney, P
    Parsons, S
    Sonenberg, L
    KNOWLEDGE ENGINEERING REVIEW, 2003, 18 (04): : 343 - 375
  • [8] Coordinated inductive learning using argumentation-based communication
    Santiago Ontañón
    Enric Plaza
    Autonomous Agents and Multi-Agent Systems, 2015, 29 : 266 - 304
  • [9] Argumentation-based Machine Learning for Inconsistent Knowledge Bases
    Khanh N.T.H.
    Informatica (Slovenia), 2024, 48 (09): : 107 - 112
  • [10] Argumentation-Based Reinforcement Learning for RoboCup Soccer Takeaway
    Gao, Yang
    Toni, Francesca
    AAMAS'14: PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS & MULTIAGENT SYSTEMS, 2014, : 1411 - 1412